• Title/Summary/Keyword: Alluvium

Search Result 128, Processing Time 0.028 seconds

Cooling Performance of Geothermal Heat Pump using Alluvium Aquifer (충적대수층을 이용한 지열히트펌프시스템의 냉방성능)

  • Kang, Byung-Chan;Park, Jun-Un;Lee, Chol-Woo;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.561-566
    • /
    • 2009
  • Alluvium is sedimentary stratum and composed of gravel, sand, silt, clay. Permeability of alluvium is the higher. If alluvium have lots of aquifer, will be of great use heat source and heat sink of heat pump. Alluvium aquifer contain the thermal energy of surrounding ground. Also geothermal heat pump using alluvium aquifer reduce expenses than general geothermal heat pump, because geothermal heat pump using alluvium aquifer make use of single well. In this study geothermal heat pump using alluvium aquifer was installed and tested for a building. The heat pump capacity is 30USRT. Temperature of ground water is in $12{\sim}17^{\circ}C$ annually and the quality of the water is as good as living water. The heat pump cooling COP is 4.4 ~ 4.7. The system cooling COP is 3.25 ~ 3.6. This performance is as good as BHE type ground source heat pump.

  • PDF

Electrical and Hydrological Properties of Alluvium (충적층(沖積層)의 투수성(透水性)과 지하수(地下水)의 전기탐사(電氣探査)에 대(對)하여)

  • Jin, Doo Jung
    • Economic and Environmental Geology
    • /
    • v.1 no.1
    • /
    • pp.70-73
    • /
    • 1968
  • In Korea, ground water exploration by the electric method as a major prospecting tool has been carried out mainly in alluvial deposits, So it is considered to be important to understand the principle concerning the electrical and hydrological properties of alluvium. Factors which affect on the electrical and hydrological properties of alluvium were investigated. Major elements in ground water exploration are porosity and dermeability for most alluvial deposits with exceptions in some particular areas. Much water yield can be expected where alluvial materials have large porosity and small particle size while large particle size in necessary for good permeability. Problem is to locate the points which have comparatively large porosity and good permeability at a time. It is known that electrical resistivity method is proved useful to solve the above problem. The conclusion is: Localities which have greater alluvium thickness(7 to 10m) and 200 to 500 ohm -m of real resistivity value are suitable for well site in alluvial deposits in Korea where alluvium thickness is comparatively small(less than 10m in generaa) and bedrock formations are mainly composed of granite gneiss and granite.

  • PDF

Geomorphological Characteristics of the Miho Stream Flowing through a Granitic Plain, South Korea (화강암 분지를 흐르는 미호천의 지형학적 특색)

  • Kim, Young Rae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.1-11
    • /
    • 2021
  • The drainage area of the Miho stream is composed of granitic basins, gneissic and sedimentary mountains. 80 percent of the Miho stream flows through the Jincheon basin and the Cheongju inner-plain within the Daebo granite belt. Because the deep weathering of granitic hills provides a large amount of sands to the streams, there are wide floodplains with thick alluvium developed in the basin and plain. The thickness of the alluvium is 5~10m and the width of the floodplains is 2~2.5km. In the basin outlet area where a stream passes through the mountain canyon, wide floodplains and deep alluvium are developed in other riverside. The Miho stream is a sand-gravel channel flowing through the Cheongju inner-plain with wide floodplains and deep alluvium formed by deep weathering of granite.

CJM Grouting to Reduce the Permeability in Alluvium (충적층 차수벽으로서 CJM Grouting)

  • Chun, Byung-Sik;Yang, Hyung-Chil
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.253-263
    • /
    • 2005
  • There were no cases to use CJM Grouting to Reduce the Permeability of open-cut in Alluvium adjacent to Han River. In this paper, the applicability of CJM Grouting to Reduce the Permeability in Alluvium is reasonably estimated by in-situ Permeability test and coring. It is known that the range of improvement is decided by injection pressure, time of high pressure water and by slump, injection pressure of injection materials.

  • PDF

통계분석을 이용한 지하수위 변동 특성 분류

  • 문상기;우남칠
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.155-159
    • /
    • 2001
  • A study on multivariate statistical classification of ground water hydrographs was conducted. The vast data of national ground water monitoring network (78 sites of alluvium) were used. 6 factors were selected to classify the ground water level change. Factor analysis was proved to be useful tool for classifying vast hydrogeological data.

  • PDF

Numerical modeling of dynamic compaction process in dry sands considering critical distance from adjacent structures

  • Pourjenabia, Majid;Hamidi, Amir
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.49-56
    • /
    • 2015
  • Dynamic compaction (DC) is a useful method for improvement of granular soils. The method is based on falling a tamper (weighting 5 to 40 ton) from the height of 15 to 30 meters on loose soil that results in stress distribution, vibration of soil particles and desirable compaction of the soil. Propagation of the waves during tamping affects adjacent structures and causes structural damage or loss of performance. Therefore, determination of the safe or critical distance from tamping point to prevent structural hazards is necessary. According to FHWA, the critical distance is defined as the limit of a particle velocity of 76 mm/s. In present study, the ABAQUS software was used for numerical modeling of DC process and determination of the safe distance based on particle velocity criterion. Different variables like alluvium depth, relative density, and impact energy were considered in finite element modeling. It was concluded that for alluvium depths less than 10 m, reflection of the body waves from lower boundaries back to the soil and resonance phenomenon increases the critical distance. However, the critical distance decreases for alluvium depths more than 10 m. Moreover, it was observed that relative density of the alluvium does not significantly influence the critical distance value.

A Study on Geothermal Evaluation of Alluvium and Riverbed using Thermal Line Temperature Monitoring (다중 온도 모니터링을 통한 충적층 및 하상의 지열특성 평가 연구)

  • Jung, Woo-Sung;Kim, Hyoung-Soo;Park, Dong-Soon;Ahn, Young-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.171-178
    • /
    • 2006
  • In advanced countries, state-of-the-art temperature monitoring technique is widely used for effective use of geothermal resources. But these kind of modern tools such as Thermal Line Sensor has not been applied to find geothermal characteristics of alluvium and riverbed in domestic area. In this research, state-of-the-art thermal line temperature sensor monitoring was introduced. And long term field test using this type of sensor was performed to find geothermal characteristics of alluvium and riverbed and evaluate the availability for heat energy source. As a result, temperature monitoring technique through thermal line sensor was very effective to obtain basic geothermal information of alluvium deposit and riverbed. Also, it was found that the groundwater temperature phase showed its potential of utilization as a energy source of heat pump. It is estimated that further study shows a specific corelation between temperature monitoring data and its availability as a energy source.

  • PDF

IP Characteristics of Sand and Silt for Investigating the Alluvium Aquifer (충적대수층 조사를 위한 모래와 점토의 유도분극 특성 고찰)

  • Choi, Sang-Hyuk;Kim, Hyoung-Soo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.423-431
    • /
    • 2008
  • In general, water-saturated silt or clay alluvium is characterized with relatively low-resistivity. Thus we often encountered the problem that such a low-resistivity layer is misguided to be good aquifer of high-permeability and low-resistivity in the development of groundwater. This research was conducted with an emphasis on the identification of saturated silt or clay layer from the aquifer by performing the laboratory experiment of IP and resistivity methods on the various materials consisting of alluvium aquifer. Silt or clay layer is found to be characterized with the higher chargeability zone, compared to the sand layer. Regarding the mixture of sand and clay, the higher clay volume, the lower resistivity and the higher chargeability. Subsequently chargeability decreases.

Riverbank Filtration Well Development for a Heat Source/Sink of Ground Water Heat Pumps (시설원예 냉난방을 위한 온도차에너지 열원용 충적대수층 강변여과수 개발)

  • Cho, Yong;Lee, Nam Young;Lee, Song Ee;Moon, Jong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.171.1-171.1
    • /
    • 2010
  • Riverbank filtration wells have been developed to supply a heat source/sink of water in the alluvium aquifer to ground water heat pumps for cooling and heating of a green house. In order to look for an appropriate site to carry out the research, two sites of Jinju and Gumi areas were investigated. In the results of the electrical resistivity surveys, Jinju and Gumi areas have the alluvium aquifer in the depth of 6~17 m and 10~20 m under the ground respectively. Two boreholes have been drilled in each site of both areas. The averaged water level at Jinju site is about 3 m under the ground, and 3.5 m and 6.5 m of sandy gravel aquifer layers are existed in each site. While Gumi site has 10 m water level and 2.5 m and 4.6 m of sandy gravel aquifer. Therefore, it is expected that $1,000m^3$/day of water could be withdrawn at Jinju site rather than Gumi site.

  • PDF