• Title/Summary/Keyword: Alluvial plain

Search Result 69, Processing Time 0.022 seconds

A Development of Automatic Lineament Extraction Algorithm from Landsat TM images for Geological Applications (지질학적 활용을 위한 Landsat TM 자료의 자동화된 선구조 추출 알고리즘의 개발)

  • 원중선;김상완;민경덕;이영훈
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.175-195
    • /
    • 1998
  • Automatic lineament extraction algorithms had been developed by various researches for geological purpose using remotely sensed data. However, most of them are designed for a certain topographic model, for instance rugged mountainous region or flat basin. Most of common topographic characteristic in Korea is a mountainous region along with alluvial plain, and consequently it is difficult to apply previous algorithms directly to this area. A new algorithm of automatic lineament extraction from remotely sensed images is developed in this study specifically for geological applications. An algorithm, named as DSTA(Dynamic Segment Tracing Algorithm), is developed to produce binary image composed of linear component and non-linear component. The proposed algorithm effectively reduces the look direction bias associated with sun's azimuth angle and the noise in the low contrast region by utilizing a dynamic sub window. This algorithm can successfully accomodate lineaments in the alluvial plain as well as mountainous region. Two additional algorithms for estimating the individual lineament vector, named as ALEHHT(Automatic Lineament Extraction by Hierarchical Hough Transform) and ALEGHT(Automatic Lineament Extraction by Generalized Hough Transform) which are merging operation steps through the Hierarchical Hough transform and Generalized Hough transform respectively, are also developed to generate geological lineaments. The merging operation proposed in this study is consisted of three parameters: the angle between two lines($\delta$$\beta$), the perpendicular distance($(d_ij)$), and the distance between midpoints of lines(dn). The test result of the developed algorithm using Landsat TM image demonstrates that lineaments in alluvial plain as well as in rugged mountain is extremely well extracted. Even the lineaments parallel to sun's azimuth angle are also well detected by this approach. Further study is, however, required to accommodate the effect of quantization interval(droh) parameter in ALEGHT for optimization.

The Ages of Fault Activities of the Ilkwang Fault in Southeastern Korea, Revealed by Classification of Geomorphic Surfaces and Trench Survey

  • Ho, Chang;Ree, Jin-Han;Joo, Byung-Chan
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.1-2
    • /
    • 2004
  • The Ilkwang Fault is NNE-striking, elongated 40 Km between Ulsan and Haendae-ku, Busan in southeastem part of the Korean Peninsula(Kim, D.H. et al., 1989; Kim, J.S. et al., 2003). This paper is mainly concemed about the ages of the fault activities especially in the Quatemary, infered from classification of geomorphic surface and trench excavation for the construction of Singori nuclear power plant. The geomorphi surfaces are classified into the Beach and the Alluvial plain, the 10 m a.s.l. Marine terrace, the 20 m a.s.l. Marine terrace, the Reworked surface of 45 m a.s.l. Marine terrace and the Low relief erosional surface, from lower to higher altitude. The Beach and the Alluvial plain are elongated to the Holocene terrace(ist terrace, choi, 2003). The 10 m a.s.l. Marine terrace is correlated to 2nd terrace (MIS 5em 125 Ka. y. B.P., Choi, 1998). The 45 m a.s.l. Marine terace is correlated to the Lower marine terrace (MIS 7,220 Ka. y. B.P., Choi, 2003 or MIS 9,320 y. B.P.) to the Gwanganri terrace(Penultimate interglacial age, 200-200 Ka. Y. B.P., Oh, 1981). The Low relief erosional surface is distributed coastal side, the Reworked surface of 45 m a.s.l. Marine terrace inland side by the Ilkwang Fault Line as the boundary line. But the former is above 10 m higher in relative height than the latter. The 20 m a.s.l. Marine terrace on the elongation line of the Ilkwang Fault reveals no dislocation. A site was trenched on the straight contract line with $N30^{\circ}$ E-striking between the 10 m a.s.l. Marine terrace and the 20 m a.s.l. Marine terrace. Fault line or dislocation was not observable in the trench excavation. Accordingly, the straight contact line is inferred as the ancient shoreline of the 10 m a.s.l. Marine terrace. The Ages of the Fault activities are inferred after the formation of the Ichonri Formation - before the formation of the 45 m a.s.l. Marine terrace (220 Ka. y. B.P. or 320 Ka. y. B.P.). The Low relief erosional surface was an island above the sea-level during the formation of the 45 m a.s.l. Marine terrace in the paleogeography.

  • PDF

Carbon Isotope Analysis for the Climatic Environment Change in South Korea During the Holocene: a Case Study in Yengjong Islands of Yellow Sea (탄소동위원소분석을 이용한 한국 홀로세의 기후환경변화: 서해 영종도지역을 사례로)

  • Jung, Hea-Kyung;Park, Ji-Hoon;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.31 no.4
    • /
    • pp.313-321
    • /
    • 2010
  • The landform of the study area is defined as a small-scale alluvial plain in the valley bottom adjacent to the coast. By the aggradation of alluvial materials, this valley bottom plain was formed in dissected parts of low hills. For the purpose of reconstructing the palaeo climate environment in this study, $\delta^{13}C$ analysis and soil organic carbon analysis are therefore employed. Main results of this study are as follows: Section I: the period of $6,600{\pm}60yr$ B.P.$-5,350{\pm}60yr$B.P. was mostly in warm and humid climate environment. A little changes of the humid environment are detected as subdry (or sub-humid)${\rightarrow}$humid in terms of the dryness and wetness. Section II: the period of $5,350{\pm}60yr$ B.P.-2,200 yr B.P. was in warm and humid climate environment, which is similar to the present. However, The sediments between $4,720{\pm}60yr$ B.P. and $4,210{\pm}50 yr$ B.P. experienced the most humid climate environment of all studied sedimentary layers. After $4,210{\pm}50 yr$ B.P., the environment started to change from the humid to the sub-humid (or sub-dry) climate. Section III: the period of 2,200 yr B.P.$-210{\pm}60 yr$ B.P. was distinguish from previous two sections as the environmental changes to sub-humid (or sub-dry) climate was apparent.

Geomorphological Development and Paleoenvironment around Sinsong-ri, Gobuk-myeon, Seosan-si, South Korea (서산시 고북면 신송리 유적 일대의 지형 발달과 고환경 분석)

  • Hwang, Sang-Ill;Kim, Hyo-Seon;Yoon, Soon-Ock
    • The Korean Journal of Quaternary Research
    • /
    • v.24 no.2
    • /
    • pp.23-34
    • /
    • 2010
  • The purpose of this study is to clarify the characteristics of geomorphic surfaces and investigate their geomorphological development at Sinsong-ri archaeological sites by the classification of geomorphic surfaces. The sedimentary facies of trench 1, 2 and 3 were identified and pollen analysis was performed at site 3. The geomorphic surfaces are classified by hillslope, valley plain, alluvial fan and river terrace. Most of the study area is located on low hillsides and valley plains are connected with tidal flats extended from small river valley. Also, alluvial fans are distributed over the piedmont and narrow, long river terraces are developed downstream along the Sojeong-stream flowing between valley plain and hillsides. River valleys were deeply eroded during the Last Glacial Maximum (LGM) periods, responded to the lowest sea level among the hillslopes and valley plains are formed during the Holocene. The sedimentary facies are identified composed of basal gravel layers with coarse gravels and sands, relatively thick culture layer of the Bronze Age and thin layer during the early Iron Age in upper part study area. Thus, land uses during the Bronze Age people was performed more intensively comparing to the early Iron Age by deforestation for habitation.

  • PDF

Physico-chemical Properties of Soils Developed on the Different Topographies in Korea (우리나라 농경지토양(農耕地土壤)의 지형별(地形別) 이화학적(理化學的) 특성(特性))

  • Hyeon, Geun-Soo;Park, Chang-Seo;Jung, Sug-Jae;Moon, Joon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.271-279
    • /
    • 1989
  • Mean values representing the particle size distribution and some chemical properties for the cultivated soils were obtained from the analysis results of the typical profiles, which were described by the detailed soil maps throughout Korea. Analysis results of 5,215 soil samples (3,075 for paddy and 2,140 for upland) were available for the determination of mean values. The results are under. 1. Paddy topsoil contained 20.4% for clay, 5.8 for pH, 2.6% for organic matter, 10.4me/100g for exchangeable K, and 89ppm for available $P_2O_5$. Upland topsoil did 17.3% for clay, 5.5 for pH, 1.8% for organic matter, 9.lme/100g for CEC, 0.29me/100g for exchangeable K, and 103ppm for availabal $P_2O_5$. 2. Soil properies for paddy were markedly influenced by the reliefs. Topsoil contained 21.4% for clay, 6.0 for pH, 2.2% for organic matter, 10.8me/100g for CEC, 0.39me/100g for exchang-cable K and 57ppm for available $P_2O_5$ on the fluvio-marine plain, 15.3%, 5.7, 2.0%, 8.6me/100g, 0.17me/100g and 76ppm on the alluvial plain, 18.8%, 5.9, 2.7%, 10.4me/100g, 0.19me/100g and 80ppm on the valleys and fans, 25.0%, 5.7, 2.5%, 11.5me/100g, 0.26me/100g, 0.27me/100g and 141ppm on the moutain foot slopes, respectively. 3. Soil Properties for upland, also, were markedly influenced by the reliefs. Topsoil contained 5.5% for clay, 5.7 for pH, 1.1% for organic matter, 4.7me/100g for CEC, 0.17me/100g for exchangeable K and 50ppm for available $P_2O_5$ on the fluvio-marine plain, 10.3%, 5.5, 1.4%, 7.6me/100g, 0.26me/100g and 160ppm on the alluvial plain, 13.9%, 5.4, 1.8%, 9.3me/100g, 0.24me/100g and and 184ppm on the valleys and fans, 29.8%, 5.3, 2.1%, 11.2me/100g 0.40me/100g and 58ppm on the alluvial plain, 20.0%, 5.7, 2.7%, 11.4me/100g, 0.32me/100g and 116ppm on the mountain foot slopes, and 24.6%, 5.3, 1.8%, 10.2me/100g, 0.28me/100g and 51ppm on the rolling and Hill. 4. All chemical properties did not reach the ideal value for maximizing land capability. 5. Organic matter, exchangeable cations and available $P_2O_5$ were not normally distributed. Intervals of one and two standard deviations about mean of an approximately normal distribution were calculated.

  • PDF

Seasonal Variations of EWT and COP of GWHP System Using the Bank Infilterated Water from Stream-Alluvial Aquifer System (하천-충적대수층계의 강변여과수를 열원으로 이용하는 지하수 열펌프 시스템의 계절별 입구온도와 효율성 평가)

  • Hahn, Chan;Jeon, Jae-Soo;Yoon, Yoon-Sang;Han, Hyok-Sang;Hahn, Jeong-Sang
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.39-51
    • /
    • 2007
  • Unconsolidated and permeable alluvial deposit composed of sand and gravel is distributed along the fluvial plain at the Iryong study area. Previous studies on the area show that a single alluvial well can produce at least 1,650m3d-1 of bank infilterated shallow groundwater(BIGW) from the deposit. This study is aimed to evaluate and simulate the influence that seasonal variation of water levels and temperatures of the river have an effect on those of BIGW under the pumping condition and also to compare seasonal variation of COPs when indirectly pumped BIGW or directly pumped surface water are used for a water to water heat pump system as an heat source and sink using 3 D flow and heat transport model of Feflow. The result shows that the magnitude influenced to water level of BIGW by fluctuation of river water level in summer and winter is about 48% and 75% of Nakdong river water level separately. Seasonal change of river water temperature is about $23.7^{\circ}C$, on other hand that of BIGW is only $3.8^{\circ}C$. The seasonal temperatures of BIGW are ranged from minimum $14.5^{\circ}C$ in cold winter(January) and maximum $18.3^{\circ}C$ in hot summer(July). It stands for that BIGW is a good source of heat energy for heating and cooling system owing to maintaining quite similar temperature($16^{\circ}C$) of background shallow groundwater. Average COPh in winter time and COPc in summer time of BIGW and surface water are estimated about 3.95, 3.5, and about 6.16 and 4.81 respectively. It clearly indicates that coefficient of performance of heat pump system using BIGW are higher than 12.9% in winter time and 28.1% in summer time in comparision with those of surface water.

  • PDF

Observation and Analysis of the Acumulted Sit Foundation (하성퇴적층지반 조사결과)

  • 김주범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.4
    • /
    • pp.3611-3616
    • /
    • 1974
  • Alluvial plain of the coast of Kum river tail were found as being mostly consisted of weak foundation. The settlement of the ground, density and change of moisture content which were formed by the load due the construction of earth works were disclossed by the field investigations and laboratory tests. The results are as follow, 1) Banking materials are SM and soft soil stratum is CL. 2) Field moisture content; Wf=19-1.37c c; percentage of clay (less than 0.005mm) 3) optimum water content and maximum density of banking materials; rt=2.15$\mid$0.0165W(12%24%) 4) Density and moisture coutent of banking materials; rt=2.146-0.0095W (8%50%) 5) Density and moisture content of weak foundation; rt=2.06-0. 007W After construction (20%50%) Befor construction (40%60%) 6) Load and settlement of weak foundation; Everage settlement ratio; 12% of actual load p Maximum settlement ratio; 19% of actual load p Minimum settlement ratio: 5% of actual load p 7) Relation of cohesion and unconfined compression test value; c=1/2qu (qu<0.5kg/$\textrm{cm}^2$) c=1/3qu (qu<0.5kg/$\textrm{cm}^2$)

  • PDF

The Influences of Aquifer Thermal Energy Storage (ATES) System on Geochemical Properties of Groundwater (대수층 계간 축열시스템 적용을 위한 지하수의 화학적 특성 변화)

  • Choi, Hanna;Lee, Hong-Jin;Shim, Byoung Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.14-24
    • /
    • 2021
  • Aquifer thermal energy storage (ATES) system uses groundwater thermal energy for cooling and heating of buildings, and it is also often utilized to provide warm water to crops and plants for the purpose of enhancing agricultural yields. This study investigated the potential influences of a ATES system on the geochemical properties of groundwater by simulating the variation of hydrochemistry and saturation index of groundwater during ATES operation. The test bed was installed at an agricultural field, which is mainly composed of an groundwater-rich alluvial plain. The simulation results showed no significant precipitation of mineral phases such as manganese-iron oxide, carbonate and sulfate around the ATES test bed, as well as no debasement of other important water quality parameters. The implementation of ATES system in the study area was appropriate and effective for utilizing the thermal energy of groundwater for agricultural use.

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

Post LGM Fluvial Environment and Palynological Changes of South Korea

  • Kim, Ju-Yong;Yang, Dong-Yoon;Bong, Pil-Yoon;Nahm, Wook-Hyun;Lee, Heon-Jong;Lee, Yung-Jo;Hong, Sei-Sun;Lee, Jin-Young;Kim, Jin-Wkan;Oh, Keun-Chang
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.17-23
    • /
    • 2003
  • In Korea terrestrial fluvial sequences can be used as pedological and sedimentological markers indicating a millenium-scale environmental and climatic changes imprinted in fluvial sub-environments, which in turn are represented by the cyclicity of fluvial sands, backswamp organic muds, and flooding muds intercalations of frostcracked or dessicated brown paleosols. Post LGM and Holocene fluvial and alluvial sedimentary sequences of Korea are formed in such landscapes of coastal, floodplain, backswamp and hillslope areas. Among them, the most outstanding depositional sequences are fluvial gravels, sands and organic mud deposits in coastal, fluvial, or alluvial wetlands. The aim of this study is to explain the sedimentary sequences and palynofloral zones since the last 15,000years, on the basis of organic muds layers intercalated in fluvial sand deposits. Jangheung-ri site of Nam river, Soro-ri site of Miho river, Youngsan rivermouth site in Muan, Oksan-ri site of Hampyeong and Sanggap-ri site of Gochang are illustrated to interpret their sedimentary facies, radiocarbon datings, and palynofloral zonation. Up to the Middle to Late Last Glacial(up to 30-35Ka), old river-bed, flooding, and backswamp sequences contain such arboreal pollens as Pinus, Abies, and Picea, and rich in non-arboreal pollens like Cyperaceae, Gramineae, Ranunculaceae, and Compositae. During the LGM and post-LGM periods until Younger Dryas, vegetation has changes from the sub-alpine conifer forest(up to about 17-11Ka), through the conifer and broad-leaved deciduous forest, or mixed forest (formed during 16,680-13,010yrB.P), to the deciduous and broad-leaved forest (older than 9,500yrB.P). In the Earliest Holocene flooding deposits, fragments of plant roots are abundant and subjected to intensive pedogenic processes. During Holocene, three arboreal pollen zones are identified in the ascending order of strata; Pinus-Colyus zone(mixed conifer and deciduous broad-leaved forest, about up to 10Ka), Alnus-Quercus forest (the cool temperate deciduous broad-leaved forest, about 10Ka-2Ka), and Pinus forest (the conifer forest, about after 2Ka), as examplified in Soro-ri site of Cheonwon county. The palynological zonations of Soro-ri, Oksan-ri, Sanggap-ri, Youngsan estuary, and Gimhae fluvial plain have been recognized as a provisional correlation tool, and zonations based on fluvial backswamp and flooding deposits shows a similar result with those of previous researchers.

  • PDF