• Title/Summary/Keyword: Alloys

Search Result 4,359, Processing Time 0.031 seconds

Effect of De-graphitization Heat Treatment on Interfacial Bonding Properties of Flake Graphite Cast Iron-Aluminum Dissimilar Materials Produced by High Pressure Die Casting (고압 다이캐스팅법으로 제조한 편상흑연주철 -알루미늄 이종소재의 계면접합특성에 미치는 탈흑연 열처리의 영향)

  • Yang, Ji-Ba-Reum;Kim, TaeHyeong;Jeong, JaeHeon;Kim, SangWoo;Kim, YoonJun;Kim, DongEung;Shin, JeSik
    • Journal of Korea Foundry Society
    • /
    • v.41 no.6
    • /
    • pp.535-542
    • /
    • 2021
  • In this study, to improve the interfacial bond strength of cast iron-aluminum dissimilar materials, graphite was removed to a certain depth from the cast iron surface through de-graphitization heat treatment. As the heat treatment time increased, the depth at which graphite was removed increased, showing a linear relationship between the heat treatment time and depth. Aluminum was filled to a certain depth on the de-graphitized cast iron surface through die-casting method, and no intermetallic compounds were formed on the cast iron-aluminum interface. The interfacial bonding strength showed a value of 90 MPa regardless of the heat treatment time, which is very high compared to the 12MPa bonding strength of the material without de-graphitization heat treatment. This result is thought to be due to the mechanical bonding of the undercut structure as the liquid aluminum, penetrated by the high pressure die-casting process, solidified in the de-graphitized region of the cast iron.

Synthesis of akermanite bioceramics by solid-state reaction and evaluation of its bioactivity (고상반응법에 의한 아커마나이트 분말의 합성 및 생체활성도 평가)

  • Go, Jaeeun;Lee, Jong Kook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.5
    • /
    • pp.191-198
    • /
    • 2022
  • Zirconia and titanium alloys, which are mainly used for dental implant materials, have poor osseointegration and osteogenesis abilities due to their bioinertness with low bioactivity on surface. In order to improve their surface bioinertness, surface modification with a bioactive material is an easy and simple method. In this study, akermanite (Ca2MgSi2O7), a silicate-based bioceramic material with excellent bone bonding ability, was synthesized by a solid-state reaction and investigated its bioactivity from the analysis of surface dissolution and precipitation of hydroxyapatite particles in SBF solution. Calcium carbonate (CaCO3), magnesium carbonate (MgCO3), and silicon dioxide (SiO2) were used as starting materials. After homogeneous mixing of starting materials by ball milling and the drying of at oven, uniaxial pressing was performed to form a compacted disk, and then heat-treated at high temperature to induce the solid-state reaction to akermanite. Bioactivity of synthesized akermanite disk was evaluated with the reaction temperature from the immersion test in SBF solution. The higher the reaction temperature, the more pronounced the akermanite phase and the less the surface dissolution at particle surface. It resulted that synthesized akermanite particles had high bioactivity on particle surface, but it depended on reacted temperature and phase composition. Moderate dissolution occurred at particle surfaces and observed the new precipitated hydroxyapatite particles in synthetic akermanite with solid-state reaction at 1100℃.

Characteristics of Lead isotope ratios and Trace elements of Excavated Bronze weapons in Pre-historical Age (선사시대 출토 청동 무기류의 납동위원소비 및 미량원소 특성)

  • Kim, So Jin;Hwang, Jin Ju;Han, Woo Rim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.219-226
    • /
    • 2021
  • We examined component analysis and lead isotope ratio analysis to find out the relationship between the excavation and the production site of 25 bronze weapons from prehistoric ages. All 25 bronze weapons are ternary alloys of copper-tin-lead and lead is artificially added. The lead isotope ratios of 25 bronze weapons show that bronze are made by raw materials in the southern regions of the Korean Peninsula, including northern China. The raw materials of narrow-shaped bronze dagger are supplied in zone 1-3 and northern China. In addition, provenance of lead for bronze halberd and pearhead are the rest of the region except for zone 1 and zone 4. Silver are enriched in most samples and zinc and cobalt are deficient. Arsenic and antimony detected only specific samples and can be used as critical parameter for provenance study. Lead isotopes and trace elements of archaeological bronzes will provide conservation scientist with useful tool to study the provenance of raw materials

Comparison of Li(I) Precipitation from the Leaching Solution of the Dust from Spent Lithium-ion Batteries Treatment between Sodium Carbonate and Ammonium Carbonate (폐리튬이온전지 처리시 발생한 더스트 침출용액으로부터 Na2CO3와 (NH4)2CO3에 의한 리튬(I) 석출 비교)

  • Nguyen, Thi Thu Huong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.31 no.5
    • /
    • pp.34-41
    • /
    • 2022
  • Smelting reduction of spent lithium-ion batteries results in metallic alloys, slag, and dust containing Li(I). Precipitation of Li2CO3 was performed using the synthetic leachate of the dust. Herein, the effects of the precipitant and addition of non-aqueous solvents on the precipitation of Li(I) were investigated. Na2CO3 was a more effective precipitating agent than (NH4)2CO3 owing to the hydrolysis reaction of dissolved ammonium and carbonate. The addition of acetone or ethanol improved the Li(I) precipitation percentage for both the precipitants. When using (NH4)2CO3, the Li(I) precipitation percentage increased at a solution pH of 12. Under the same conditions, the Li(I) precipitation percentage using Na2CO3 was much higher than that using (NH4)2CO3.

Current Status and Necessity of Separation Technology to Secure Vanadium Mineral Resources (바나듐 광물자원 확보를 위한 선별 기술 현황 및 필요성)

  • Jeon, Hoseok;Han, Yosep;Baek, Sangho;Davaadorj, Tsogchuluun;Go, Byunghun;Jeong, Dohyun;Chu, Yeoni;Kim, Seongmin
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.3-11
    • /
    • 2022
  • Owing to the global development of high-strength alloys and renewable energy industries, the demand for vanadium, a key raw material in these industries, is expected to increase. Until now, vanadium has been recovered as a by-product of the industry, but interest in its direct recovery from minerals has increasing with its significantly increasing demand. In particular, the recovery of vanadium from stone coal ore and vanadium titano-magnetite (VTM) containing vanadium has been actively researched in China, which has the largest reserves and production of vanadium in the world. In Korea, a large amount of VTM also occurs in the northern part of Gyeonggi-do, and fundamental research and technical development is being conducted to recover vanadium. It is necessary to understand the current status of the separation technology used worldwide to satisfy the demand for metals such as vanadium, which currently depends on imports.

$M\""{o}ssbauer$ Effet Studies on Nanocrystalline $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_6$ Alloy (초미세결정립 $ Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_6$ 합금의 $M\""{o}ssbauer$ 효과 연구)

  • 신영남;김재경;양재석;조익한;강신규
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.1
    • /
    • pp.12-19
    • /
    • 1994
  • The crystallization behavior of the amorphous $Fe_{73.5}Cu_{1}Nb_{3}Si_{16.5}B_{6}$ alloy with isothermal annealing at $552^{\circ}C$ was studied by $M\"{o}ssbauer$ spectroscopy. The amorphous phase was revealed to coexist together with $Do_{3}-FeSi$ nanocrystalline and Cu-duster in annealed alloys by $M\"{o}ssbauer$ spectrum analysis. At the early stage of crystallization, Si content of FeSi is high due to the creation of Cu-cluster, and decreases with annealing until 60 minutes, which results in the increase in the mean hyperfine field of FeSi, and thereafter keeps constant. After 60 minutes, the decrease in the mean hyperfine field of the residual armrphous, in spite of a slight change in the volume fraction of the FeSi and the residual armrphous, is caused by the increase in the content of Nb and B in residual amorphous phase. Both directions of the hyperfine field, those of the FeSi and the residual amorphous, become randomly oriented in about 60 minutes. For FeSi and Cu-duster, the Avrami exponents are 0.51 and O.65, the activation energies are 2.35 eV and 2.44 eV, and the incubation times are 2.4 minutes and 0.8 minutes respectively. Earlier formation of Cu-duster than that of FeSi is coincidence with the fact that Cu atom promotes the nucleation of the FeSi.

  • PDF

Experimental Assessment of the Methanol Addition Effect on the Tribological Characteristics of Ni-based Alloy (메탄올 첨가에 따른 Ni 기반 합금의 트라이볼로지 특성 변화에 대한 실험적 연구)

  • Junemin Choi;Sangmoon Park;Youngjun Kim;Sunghoon Kim;Hyemin Kim;Jeongeon Park;JeongWon Yu;Myeonggyu Lee;Hyeonwoo Lee;Koo-Hyun Chung
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.49-55
    • /
    • 2023
  • Currently, the demand for green technologies toward a sustainable future is rapidly increasing due to growing concern over environmental issues. Methanol is biodegradable and can provide clean combustion to reduce sulfur oxide and nitrogen oxide emissions, and therefore it is a candidate fuel for marine engines. However, the effect of methanol on tribological characteristic degradation should be addressed for methanol-fueled engines. In this study, the methanol addition effects on tribological characteristic degradation is experimentally assessed using a pin-on-disk tribo-tester. Ni-based alloy is used as a target material due to its broad applicability as an engine component material. For a lubricant, engine oil with and without methanol are used. The tests are conducted for up to 10,000 cycles under boundary lubrication while the change in friction force is monitored. Additionally, the wear rate is determined based on laser scanning confocal microscope data. An additional test in which methanol is added at regular intervals is performed with an aim to directly observe its effect on friction. Overall, the friction coefficient increases slightly with increasing methanol concentration. Furthermore, the wear rate of the pin and disk increase significantly with methanol addition. The results also indicate that the friction increases instantaneously with methanol addition at the contacting interface. These findings may be useful for better understanding the methanol effect on the tribological characteristics of Ni-based alloys for methanol-fueled engines with improved performance.

Analysis of High-Temperature Corrosion of Heat Exchanger Tubes in Biomass Circulating Fluidized Bed Boiler (바이오매스 순환유동층 보일러의 열교환기 고온 부식 특성)

  • Yujin Choi;Dal-hee Bae;Doyeon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.419-425
    • /
    • 2023
  • This paper presents the research results of analyzing the high-temperature corrosion characteristics of three currently commercialized heat exchanger tube materials under actual operating conditions of a biomass power plant. In order to precisely analyze the high-temperature corrosion characteristics of these materials, a high-temperature corrosion evaluation device was installed in the power plant equipment, which allows for adjusting the surface temperature of the heat exchanger tubes. Experiments were conducted for approximately 300 hours under various temperature and operating conditions. In this study, the commercialized heat exchanger tube materials used were SA213T12, SA213T22, and SA213T91 alloys. In order to objectively analyze the high-temperature corrosion characteristics of each material, an international standard-based process to remove corrosion products was applied to obtain the weight change of the specimens, and the average thickness loss and corrosion rate were derived. Thus, the high-temperature corrosion results for each condition were quantitatively compared and analyzed. In addition, in order to increase the reliability of the high-temperature corrosion evaluation method introduced in this study, the surface and cross-sectional corrosion of the specimens were confirmed by using scanning electron microscopy and energy-dispersive X-ray analysis. Based on these analysis results, it was found that the corrosion resistance of the commercial heat exchanger materials increases as the content of chrome and nickel in the composition increases. Additionally, it was found that the corrosion phenomenon is rapidly accelerated as the surface temperature increases. Finally, the replacement period (lifetime) of the heat exchanger tubes under each condition could be inferred through this study.

The effects of different metal posts, cements, and exposure parameters on cone-beam computed tomography artifacts

  • Ana Priscila Lira de Farias Freitas;Larissa Rangel Peixoto;Fernanda Clotilde Mariz Suassuna;Patricia Meira Bento;Ana Marly Araujo Maia Amorim;Karla Rovaris Silva;Renata Quirino de Almeida Barros;Andrea dos Anjos Pontual de Andrade Lima;Daniela Pita de Melo
    • Imaging Science in Dentistry
    • /
    • v.53 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • Purpose: This study assessed the intensity of artifacts produced by 2 metal posts, 2 cements, and different exposure parameters using 2 cone-beam computed tomography (CBCT) units. Materials and Methods: The sample was composed of 20 single-rooted premolars, divided into 4 groups: Ni-Cr/zinc phosphate, Ni-Cr/resin cement, Ag-Pd/zinc phosphate, and Ag-Pd/resin cement. Samples were scanned before and after post insertion and cementation using a CS9000 3D scanner with 4 exposure parameters (85/90 kV and 6.3/10 mA) and an i-CAT scanner with 120 kV and 5 mA. The presence of artifacts was assessed subjectively by 2 observers and objectively by a trained observer using ImageJ software. The Mann-Whitney, Wilcoxon, weighted kappa, and chi-square tests were used to assess data at a 95% confidence level(α<0.05). Results: In the subjective analyses, AgPd presented more hypodense and hyperdense lines than NiCr (P<0.05), and more hypodense halos were found using i-CAT (P<0.05) than using CS9000 3D. More hypodense halos, hypodense lines, and hyperdense lines were observed at 10 mA than at 6.3 mA (P<0.05). More hypodense halos were observed at 85 kV than at 90 kV (P<0.05). CS9000 3D presented more hypodense and hyperdense lines than i-CAT (P<0.05). In the objective analyses, AgPd presented higher percentages of hyperdense and hypodense artifacts than NiCr (P<0.05). Zinc phosphate cement presented higher hyperdense artifact percentages on CS9000 3D scans(P<0.05). CS9000 3D presented higher artifact percentages than i-CAT(P<0.05). Conclusion: High-atomic-number alloys, higher tube current, and lower tube voltage may increase the artifacts present in CBCT images.

Elevated Temperature Creep Behavior of Rapidly Solidified Al-9.45wt%Fe-4.45wt%Cr Alloy (급냉응고된 Al-9.45wt%Fe-4.45wt%Cr합금의 고온 크?거동)

  • Rhim, J.K.;Kim, K.H.;Kim, T.S.
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.208-215
    • /
    • 1999
  • The creep behavior of a rapidly solidified and consolidated Al-9.45wt%Fe-4.45wt%Cr alloy were investigated in the stress range 40 to 115 MPa and temperature range 300(0.53Tm) to 441$^{\circ}C$(0.66Tm). It is of use to available aerospace and automobile industries for the improved performance of materials used at high temperature. Because Al alloys with improved creep resistance offer the potential for lower weight and reduced costs in aerospace and automobile components (e.g., structural members and engine parts) through the replacement of heavier and more costly materials, the safety in use at high temperature is good. The alloy is characterized by high stress exponents and activation energies for creep, which are greatly dependent on the stress and temperature. Because the creep stress is seen to cause a strongly significant enhancement of coarsening, the coarsening rate of the dispersed particles in all crept specimens is faster than that in isothermally annealed specimens. Dislocations connecting dispersoids are observed more cofrequently in crept specimens with higher stress and lower temperature. The creep strain rates in the power law creep regime were found to be predicted much better by the Shorty and Rosler/Arzt equation with the inclusion of a threshold stress and dislocation detachment mechanism. The dispersoids in this alloy were acting a source of void nucleation that finally leaded to ductile fracture within the grain so called intergranular. Each void was initiated, grown and failed at the dispersoids in the aluminium matrix. Grain boundary accommodation of the slip produced, which result in initiation of the void and then final transgranular fracture. Therefore, it was confirmed that these dispersoids played an important role in the fracture mechanism by the formation of $Al_{13}Fe_4$, $Al_{13}Cr_2$ and $Al_2O_3$.

  • PDF