• 제목/요약/키워드: Alloy Depletion

검색결과 34건 처리시간 0.021초

산화 티타늄 전극의 광학농도와 pH에 따른 광전기화학적 특성 (Photoelectrochemical Characteristics at the Titanium Oxide Electrode with Light Intensity and pH of the Solution)

  • 박성용;조병원;윤경석
    • 공업화학
    • /
    • 제5권2호
    • /
    • pp.255-262
    • /
    • 1994
  • 아크용융방법으로 준비한 Ti-5Bi 합금을 산화시켜 제조한 산화티타늄의 에너지변환효율(${\eta}_e$)을 광학농도, 광에너지에 따라서 측정하였다. 그리고 광학농도 및 전해액의 pH변화에 따른 플랫-밴드전압변화를 측정하였다. 광학농도와 광에너지가 증가하면 에너지변환효율은 증가하였으며 광학농도 $0.2W/cm^2$, 조사되는 빛의 에너지가 4.0eV에서 최대 에너지변환효율은 각각 3.2%, 13%로 나타났다. 에너지변환효율은 인가전압 의존성을 보여주었으며 0.5V의 전압을 인가하였을 경우 최대값을 보여주었다. 한편 전체 광전류의 발생은 산화티타늄 공핍층 내의 전자-정공쌍의 생성반응에 의해 율속되었다. 광학농도가 증가하면 플랫-밴드전압은 -0.065V/decade의 기울기를 나타내었으며 전해액의 pH가 감소하면 플랫-밴드전압은 양의 방향으로 이동하였으며 그 기울기값은 0.059V/pH로 Nernst 식의 기울기값과 일치하였다.

  • PDF

음이온 교환막 알칼리 수전해를 위한 운전 조건 및 구성요소의 최적화 (Optimization of Operating Parameters and Components for Water Electrolysis Using Anion Exchange Membrane)

  • 장명제;원미소;이규환;최승목
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.159-165
    • /
    • 2016
  • The hydrogen has been recognized as a clean, nonpolluting and unlimited energy source that can solve fossil fuel depletion and environmental pollution problems at the same time. Water electrolysis has been the most attractive technology in a way to produce hydrogen because it does not emit any pollutants compared to other method such as natural gas steam reforming and coal gasification etc. In order to improve efficiency and durability of the water electrolysis, comprehensive studies for highly active and stable electrocatalysts have been performed. The platinum group metal (PGM; Pt, Ru, Pd, Rh, etc.) electrocatalysts indicated a higher activity and stability compared with other transition metals in harsh condition such as acid solution. It is necessary to develop inexpensive non-noble metal catalysts such as transition metal oxides because the PGM catalysts is expensive materials with insufficient it's reserves. The optimization of operating parameter and the components is also important factor to develop an efficient water electrolysis cell. In this study, we optimized the operating parameter and components such as the type of AEM and density of gas diffusion layer (GDL) and the temperature/concentration of the electrolyte solution for the anion exchange membrane water electrolysis cell (AEMWEC) with the transition metal oxide alloy anode and cathode electrocatalysts. The maximum current density was $345.8mA/cm^2$ with parameter and component optimization.

1300℃급 가스터빈 1단 블레이드의 코팅분석을 이용한 열화평가 (Evaluation of the Degradation of a 1300℃-class Gas Turbine Blade by a Coating Analysis)

  • 송태훈;장성용;김범수;장중철
    • 대한금속재료학회지
    • /
    • 제48권10호
    • /
    • pp.901-906
    • /
    • 2010
  • The first stage blade of a gas turbine was operated under a severe environment which included both $1300^{\circ}C$ hot gas and thermal stress. To obtain high efficiency, a thermal barrier coating (TBC) and an internal cooling system were used to increase the firing temperature. The TBC consists of multi-layer coatings of a ceramic outer layer (top coating) and a metallic inner layer (bond coat) between the ceramic and the substrate. The top and bond coating layer respectively act as a thermal barrier against hot gas and a buffer against the thermal stress caused by the difference in the thermal expansion coefficient between the ceramic and the substrate. Particularly, the bondcoating layer improves the resistance against oxidation and corrosion. An inter-diffusion layer is generated between the bond coat and the substrate due to the exposure at a high temperature and the diffusion phenomenon. A thickness measurement result showed that the bond coat of the suction side was thicker than that of the pressure side. The thickest inter-diffusion zone was noted at SS1 (Suction Side point 1). A chemical composition analysis of the bond coat showed aluminum depletion around the inter-diffusion layer. In this study, we evaluated the properties of the bond coat and the degradation of the coating layer used on a $1300^{\circ}C$-class gas turbine blade. Moreover, the operation temperature of the blade was estimated using the Arrhenius equation and this was compared with the result of a thermal analysis.

오스테나이트계 중탄소 및 저탄소 스테인리스강의 입계부식 거동 분석 (Intergranular Corrosion Behavior of Medium and Low Carbon Austenitic Stainless Steel)

  • 원석연;김규빈;유영란;최승헌;김영식
    • Corrosion Science and Technology
    • /
    • 제21권3호
    • /
    • pp.230-241
    • /
    • 2022
  • Austenitic stainless steel has been widely used because of its good corrosion resistance and mechanical properties. However, intergranular corrosion can occur if the alloy is welded or aged. The objective of this study was to determine intergranular corrosion behaviors of austenitic medium carbon (0.05 wt%) and low carbon (0.02 wt%) stainless steel aged at several conditions. Alloys were evaluated according to ASTM A262 Practice A, ISO 12732 DL-EPR (double loop-electrochemical potentiokinetic reactivation) test, and ASTM A262 Practice C. The degree of sensitization and intergranular corrosion rate were obtained. The relationship between the degree of sensitization and the intergranular corrosion rate showed a very large fluctuation. Such behavior might be related to whether two-dimension tests or three-dimension tests were performed. On the other hand, regardless of carbon content of alloys, when the intergranular corrosion rate increased, the degree of sensitization also increased. However, the DL-EPR test showed a higher sensitivity than the Huey test for differentiating the intergranular corrosion property at a low intergranular corrosion rate, while the Huey test had a higher sensitivity than the DL-EPR test for distinguishing the intergranular corrosion property at a high intergranular corrosion rate.