• Title/Summary/Keyword: Allowable velocity

Search Result 115, Processing Time 0.027 seconds

Shape Optimization of Energy Flow Problems Using Level Set Method (레벨 셋 기법을 이용한 에너지 흐름 문제의 형상 최적화)

  • Seung-Hyun, Ha;Seonho, Cho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.411-418
    • /
    • 2004
  • Using a level set method we develop a shape optimization method applied to energy flow problems in steady state. The boundaries are implicitly represented by the level set function obtainable from the 'Hamilton-Jacobi type' equation with the 'Up-wind scheme.' The developed method defines a Lagrangian function for the constrained optimization. It minimizes a generalized compliance, satisfying the constraint of allowable volume through the variations of implicit boundary. During the optimization, the boundary velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian function. Compared with the established topology optimization method, the developed one has no numerical instability such as checkerboard problems and easy representation of topological shape variations.

  • PDF

Collision-free trajectory planning for dual robot arms

  • Chong, Nak-Young;Choi, Dong-Hoon;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.951-957
    • /
    • 1988
  • A collision-free trajectory planning algorithm is proposed to optimally coordinate two robots working in a common 3-D workspace. Each link of the two robots is modeled as a line segment and by their motion priority, one of the two robots is chosen as the master and the other the slave. And the one-step-ahead minimum distance between the two robots is computed by moving the master to the next location on its specified trajectory. Then the nominal trajectory of the slave is modified such that the distance between the next locations of the master and the slave must be larger than a prespecified allowable minimum distance. Here the weighted sum of the trajectory error and the joint motions of the slave is minimized by using the linear programming technique under the constraints that joint angle and velocity limits are not violated. To show the validity of the proposed algorithm, a numerical example is illustrated by employing a two dof's and a three dof's planar robots.

  • PDF

A Study on the Automated Design System for Gear (기어설계 자동화 시스템에 관한 연구)

  • Cho, H.Y.;Nam, G.J.;Oh, B.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.730-733
    • /
    • 2001
  • A computer aided design system for spur, helical, bevel and worm gears by using AutoCAD system and its AutoLISP computer language was newly developed in this study. Two methods are available for a designer to draw a gear. The first method needs the gear design parameters such as pressure, module, number of tooth, shaft angle, velocity, materials, etc. When the gear design parameters are inputted, a gear is drawn in AutoCAD system and maximum allowable power and shaft diameter are calculated additionally. The second method calculates all dimensions and gear design parameters to draw a gear when the information such as transmission, reduction ratio, rpm, materials and pressure are inputted. The system includes four programs. Each program is composed of a data input module, a database module, a strength calculation module, a drawing module, a text module and a drawing edit module. In conclusion, the CAD system would be widely used in companies to find the geometric data and manufacturing course.

  • PDF

Characteristics of Hypersonic Airbreathing Propulsion System and Preliminary Design of Supersonic Combustion Tunnel (극초음속 추진기관의 특성 및 초음속 연소 풍동 기초 설계)

  • 김정용;허환일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.35-38
    • /
    • 2001
  • The aerothermodynamic characteristics of SCRamjet engine for the airbreathing populsion system of the next generation flight vehicle are described. As the flow is passing by, combustion caused the total pressure loss and the Mach number decrease, but nozzle exit velocity is large enough to produce net thrust. To simulate supersonic combustion test, preliminary design of ground-based blowdown type supersonic combustion tunnel is attained. Minimum allowable operating pressure and mass flow rate are calculated for the design Mach number of 2.5 at the test section of a supersonic combustion tunnel.

  • PDF

A Study on Stress and Vibration Evaluations and Application of Piping System in Petrochemical Plant (석유화학 플랜트 배관계의 응력 및 진동 평가와 적용에 관한 연구)

  • 민선규;최명진;장승호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.110-116
    • /
    • 2002
  • Here are shown on stress and vibration evaluations and application of piping system in petrochemical plant with and actual example. While stress evaluation by thermal growth has no argument on the calculated results, vibrational evaluations have some different results in accordance with the evaluation methods. In case of the static stress evaluation the ASME B3l.3 code defines 7000 cycles of fatigue lift: in operating the piping system with a design condition. However, the method of vibrational evaluation on piping systems in petrochemical plants has not been established clearly, yet. In this stuffy, it is purposed to present the requirement of a vibrational evaluation method for petrochemical plant piping system, with an actual application.

Characteristics of flow-induced vibration for inner assembly of in-pile test section (노내시험부 내부집합체에 대한 유체유발진동특성)

  • Lee, Han-Hee;Lee, Jong-Min;Lee, Chung-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.250-253
    • /
    • 2006
  • The in-pile Section (IPS) is subjected to flow-induced vibration(FIV) due to the flow of the primary coolant and then the structural integrity. The in-pile Section (IPS) of 3-pin Fuel Test Loop(FTL) shall be installed in the vortical hole call IR1 of HANARO reactor core. In order to verify the velocity and displacement both the inside region of IPS at the annular region of IPS, the vibration was measured by varing the flow rate on both regions. The displacements of fuel assembly in the in-pile Section (IPS) were found to be lower than the values of allowable design criteria.

  • PDF

Estizmation of Structure Stability on the Ground to Vibration from Dual Composite Tunnels (이중 복합터널 상부구조물의 진동에 대한 안정성 평가)

  • Shin, S.M.;Jang, Y.S.;Lee, W.J.;Kwon, S.J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1244-1250
    • /
    • 2008
  • The site of interest is a residence redevelopment area which has excavation construction with cut-off walls. The site is located over Dong-Mang-Bong tunnel and Seoul No. 6 subway tunnel. This study analyzed numerically the influence of vibrations from No. 6 subway tunnel to the basement of the redeveloped apartment away from the distance about 11m. Kyoung-bu highspeed railway's time history model with linearly reduced maximum acceleration is applied to take into the subway maximum speed of 75km/h. The maximum velocity of vibration for the cross section of the interest was estimated as 0.28cm/sec which satisfied the allowable standard of 0.5cm/sec for apartment and residence of Seoul.

  • PDF

The Analysis of Railway signal using DSP (DSP를 사용한 열차 신호 분석)

  • 김기승;김치조;임관수;조용기
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.194-201
    • /
    • 1998
  • It is extremely necessary to use such a secure way to transmit information to a train, which is needed for operating a train. In our system, The information including the allowable velocity of the train, train existence in current area, and other data necessary for operating train, is transmitted in the form of FM signal. Received by the receiver located on train, the signal is filtered, demodulated and analyzed to extract the original information. The analysis of the demodulated signal is done through FFT algorithm using sliding slot. These all are processed digitally by hardware which is implemented by 32bit DSP. The experiments show the validity of the algorithm we presented.

  • PDF

A Review of Experimental Evaluation Method to Floor Environment Vibration Criteria for Semiconductor and Display Equipment (반도체·디스플레이 장비용 바닥 환경진동허용규제치의 실험적 평가방법 고찰)

  • An, Chae Hun;Choi, Jeong Hee;Park, Joon Soon;Park, Min Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.25-31
    • /
    • 2021
  • The semiconductor and display equipment demands an ultra-fine precision of several nm to several ㎛, and the scale is getting smaller due to the explosive development. The manufacturing process equipment for such products with ultra-fine precision is very sensitive to ultra-small vibrations flowing from the floor, resulting in problems of production defects and yield degradation. The vibration criteria are a standard that regulates the vibration environment of the floor where such precision process equipment will be installed. The BBN vibration criteria defined the allowable vibration velocity level in the frequency domain with a flat and inclined line and presented a rating according to it. However, the actual vibration criteria have appeared with various magnitudes in the frequency domain according to the dynamic characteristics of individual equipment. In this study, the relationship between the relative motion of two major points in the equipment and the vibration magnitude of the floor is presented using the frequency response function of a simple 3-DOF model. It is describing the magnitudes according to the frequency of the floor vibration that guarantees the allowable relative motion and this can be used as the vibration criteria. In order to obtain the vibration criteria experimentally a method of extracting through a modal test was introduced and verified analytically. It provides vulnerable frequency and magnitude to floor vibration in consideration of the dynamic characteristics of individual equipment. And it is possible to know necessary to improve the dynamic characteristics of the equipment, and it can be used to check the vibration compatibility of the place where the equipment will be installed.

Hydraulic Stability Examination of Rainwater Reservoir Pipe Network System on Various Inflow Conditions (유입량 변화에 따른 도심지 내 우수저류조 관망시스템의 안정성 검토)

  • Yoo, Hyung Ju;Kim, Dong Hyun;Maeng, Seung Jin;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, it is necessary to install the facilities that can cope with the initial stormwater. Most researches have been conducted on the design of facilities applying the Low Impact Development (LID) and the reduction effect on rainfall runoff to examine with 1D or 2D numerical models. However, the studies on the examination about flow characteristics and stability of pipe network systems were relatively insufficient in the literature. In this study, the stability of the pipe network system in rainwater storage tank was examined by using 3D numerical model, FLOW-3D. The changes of velocity and dynamic pressure were examined according to the number of rainwater storage tank and compared with the design criteria to derive the optimal design plan for a rainwater storage tank. As a results of numerical simulation with the design values in the previous study, it was confirmed that the velocity became increased as the number of rainwater storage tank increased. And magnitude of the velocity in pipes was formed within the design criteria. However, the velocity in the additional rainwater storage pipe was about 3.44 m/s exceeding the allowable range of the design criteria, when three or more additional rainwater storage tanks were installed. In the case of turbulence intensity and bottom shear stress, the bottom shear stress was larger than the critical shear stress as the additional rainwater storage was increased. So, the deposition of sediment was unlikely to occur, but it should be considered that the floc was formed by the reduction of the turbulence intensity. In addition, the dynamic pressure was also satisfied with the design criteria when the results were compared with the allowable internal pressure of the pipes generally used in the design of rainwater storage tank. Based on these results, it was suitable to install up to two additional rainwater storage tanks because the drainage becomes well when increasing of the number of storage tank and the velocity in the pipe becomes faster to be vulnerable to damage the pipe. However, this study has a assumption about the specifications of the rainwater storage tanks and the inflow of stormwater and has a limitation such that deriving the suitable rainwater storage tank design by simply adding the storage tank. Therefore, the various storage tank types and stormwater inflow scenarios will be asked to derive more efficient design plans in the future.