• Title/Summary/Keyword: Allowable stresses

Search Result 170, Processing Time 0.019 seconds

Evaluation of Allowable Bending Stress of Dimension Lumber; Confidence Levels and Size-adjustment

  • Pang, Sung-Jun;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.432-439
    • /
    • 2013
  • The aim of this study was to investigate the processes for evaluating the allowable bending stress. The confidence levels and the size-adjustment in standards were reviewed with experimental data. The results show that, (1) KS F 2152 was more strict than others overseas standards due to the higher confidence level. The 5% NTL of bending strengths by a method in KS F 2152 were lower than the overseas standards and more specimens were required for evaluating the structural properties according to KS F 2152. (2) Due to the absence of size-adjustment method in domestic standards, the specified size and the exponential parameters on the size-adjustment equation were reviewed by size factors. The specified size (width: 286 mm, length: 6096 mm), and the exponential parameters (w: 0.29, l: 0.14) will be suitable for developing the allowable bending stress in domestic standard. (3) The size adjusted allowable bending stresses of No. 2 grade Korean pine were lower than the allowable stresses tabulated in KBC even though less strict method (75% confidence level) to calculate 5% value was used. The allowable stresses tabulated in KBC are needed to be reviewed by continuous experimental data.

Structural Design of Box Beam Header

  • Jang, Sang-Sik;Park, Young-Ran;Kim, Yun-Hui
    • Journal of the Korea Furniture Society
    • /
    • v.18 no.4
    • /
    • pp.287-295
    • /
    • 2007
  • To obtain a design data for box beams used as headers in light-frame timber construction, $2{\times}6\;(38{\times}140mm),\;2{\times}8\;(38{\times}184mm),\;2{\times}10\;(38{\times}235mm)\;and\;2{\times}12\;(38{\times}286mm)$ members were built as box beam specimens for bending tests. The allowable bending stresses for box beams were obtained through bending tests of these specimens, and span tables were calculated for various loading conditions based on the allowable bending stresses obtained. The allowable bending stresses were determined as the bending stresses at 10mm deflection of specimens from the results of bending tests of box beam specimens. Span tables for box beams were obtained assuming five loading conditions for headers used in exterior walls and two loading conditions for headers used in interior walls. Among these 7 loading conditions, 5 loading conditions applied to headers in exterior walls included the dead loads, the live loads and the snow loads and 2 loading conditions applied to headers in interior walls included the dead loads and the live loads.

  • PDF

Allowable Compressive Stress of Pre-Tensioned Members with Tee or Inverted Tee Sections at Transfer (T형 및 역T형 단면을 가지는 프리텐션부재의 프리스트레스 도입시 허용 압축응력)

  • Lee, Deuck-Hang;Lee, Jeong-Yeon;Lim, Joo-Hyuk;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.353-364
    • /
    • 2011
  • In a previous research performed by the authors, the allowable compressive stress coefficient (K) in pretensioned members with rectangular section at transfer was proposed based on strength design theory. In this study, a subsequent research of an enormous analysis was performed to determine the K factor for Tee and inverted Tee section members, considering the effect of section height (h), section type, amount of tendons ($A_{ps}$), and eccentricity ratio (e/h). Based on the analysis results, the allowable compressive stress coefficients (K) for Tee and inverted Tee section members at transfer were derived, which limit the maximum allowable stresses as 80% and 70% of the compressive strengths at the time of release for Tee section and inverted Tee section, respectively. And these were larger than the allowable stresses specified in domestic and other international codes. In order to verify the proposed equations, they were compared to the test results available in literature and other codes, which showed that the allowable stresses in domestic and international codes are unconservative for the cases with low eccentricity ratios while conservative for those with high eccentricity ratios. The proposed equations, however, estimate the allowable stresses of the Tee and inverted Tee section members reasonably close to test results.

Assignment of the Allowable Design Values for Domestic Softwood Structural Lumber - Structural I-grade - (국산 침엽수구조재의 허용응력설정에 관하여 - 1종 구조재를 중심으로 -)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.11-16
    • /
    • 1996
  • The purpose of this paper is to present a summary of assignment design values according to domestic softwood structural lumber grading rules. Allowable stresses for visually graded lumber were determined from basic data on small. clear specimens. The data corrected for variability such as natural defects and other factors. The procedure adopted by Japan was used for assigning allowable design values. Strength ratios in relation to each defect were taken from ASTM D 245-81. Korean pine(Pinus koraiensis S. et Z.), Korean red pine(Pinus densiflora S. et Z.), Japanese larch(Larix leptolepis Gordon) and Needle fir(Abies holophylla Max) were applied to this study. The calculated allowable stresses were same in Korean pine and Korean red pine. These values were highest in Japanese larch lowest in Needle fir. So, it is desirable for these species to be classified into different catagories Species Group. However, accurate comparison in design values on lumber grading rules among U.S., Japan and Korea was somewhat difficult. And full scale testing will be necessary for accurate determination of the correction factors to setting up design values.

  • PDF

The Assessment for Coupling Integrity of Pressurizer Support Bolting (가압기 지지대 볼트 연결부의 건전성 평가에 관한 연구)

  • Cho, Nam-Jin;Kim, Woo-Chang;Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.26-31
    • /
    • 2013
  • In nuclear power plant, anchor bolts for pressurizer supports are sufficiently used in terms of safety reason, but field inspections have reported that some bolts exceed the limit of their allowable hardness. Because the high level of hardness may lead to failures due to the stress corrosion or fracture toughness, a regular inspection is required for the bolts in nuclear power plant. Thus, this research measures the hardness of bolts currently used in pressurizer supports and then estimates maximum allowable stresses preventing failures by stress corrosion and fracture toughness. Using the ANSYS program, the stresses of the bolts in the regular condition and accidental condition have been calculated, and the possible maximum stress has been compared with the estimated allowable stresses. From the results, the stresses of bolts in the accidental condition satisfy the allowable safety stress from the stress corrosion failure. However, in the future, it shall be needed to consider the reflection of the structure assembling method on the assembling procedure to ensure the pressurizer integrity during maintenance period time.

Development of a New Design Theory for Incrementally Prestressed Concrete Girder (프리스트레스를 단계적으로 도입하는 IPC 거더의 설계 이론 연구)

  • 한만엽;김진근;이차돈;박준범
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.121-130
    • /
    • 2000
  • Current engineering practice in determining sectional dimensions of prestressed concrete (PSC) girders for bridges is primarily based on the code-specified allowable concrete stresses at different loading stages. It is customary that tendons and sectional dimensions are calibrated and tendon forces are applied at once at the initial stage to keep the subsequent stresses occurring at different loading stages within the allowable stresses. This traditional tensioning method, however, usually results in a too conservative sectional depth in view of ultimate capacity of a girder. A new design method which can realize the reduction of sectional depth of PSC girders is theoretically suggested in this study. Tendons are tensioned twice at different loading stages: the initial stage and the stage after fresh slab concrete is cast. It can be shown that according to this technique, sectional depth can be significantly reduced and larger span can be realized compared to traditional ones. Parametric studies are performed with due considerations given to its practical applications.

Structural Analysis on Flange Coupling due to Change of Bolt Numbers (볼트 수 변경에 따른 플랜지 커플링에 대한 구조해석)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.57-66
    • /
    • 2013
  • This study investigates structural and vibration analyses due to the change of bolt Numbers on models 1 and 2 of flange couplings connected with both sides of axis. As maximum equivalent stresses of models 1 and 2 are 122.05 and 102.3 MPa respectively by the basis of bolt, these stresses are within the allowable stress of this model and the safety of bolt design is verified. As maximum equivalent stresses of models 1 and 2 are 196.2 and 196.4 MPa respectively by the basis of body, these stresses are within the allowable stress of this model and the safety of body design is verified. Through natural frequency analysis, maximum displacements of model 1 and 2 are shown at the frequencies of 6565.1 and 6614.9 Hz respectively. Maximum displacements in cases of models 1 and 2 are shown at harmonic frequencies of 7760 and 7840 Hz at real loading conditions. By putting these study results together, the durability of vibration at model 2 with bolt numbers of 8 becomes better than model 1 with bolt numbers of 6. These study results can be effectively utilized with the design on flange coupling by anticipating and investigating prevention and durability against its damage.

Experimental Study on Pre-Stresses Steel Beam (Pre-stress를 도입한 Steel Beam에 관한 실험적 연구)

  • 조진구;박병기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3921-3930
    • /
    • 1975
  • This research was carried out to investigate several mechanical characteristics of pre-stressed steel beams. The configuration of specimens used for this study were as follows; a cover plate having permissible fiber stress of 4,000 kg/$\textrm{cm}^2$ was welded at bottom having the allowable bending stress 2500 kg/$\textrm{cm}^2$ steel beam, the section ratios of pre-stressed steel beam and cover plate were 0.5 and 0.6. Adopted pre-stresses were 0%, 50%, and 100% of an allowable fiber stress of a steel beam. The results obtained from the study may be summarized as follows; 1. The elastic range of a beam was increased by the application of pre-stress to the beam, which leads to a lighter section. 2. The permissible moment capacity of a pre-stressed steel beam was greated than that of a steel beam without pre-stressing. 3. The equivalent allowable stress induced by adopting the different section ratio of pre-stressed beam to cover plate were figured out 4. The optimum value of section ratio of beam and cover plate was 0.3 to 0.4 in case of a 1.5m span composite beam, a combination of an allowable stress 2,500kg/$\textrm{cm}^2$ steel beam and a permissible fiber stress 4,000 kg/$\textrm{cm}^2$ steel cover plate, was used. 5. The magnitude of the pre-stress was desirable to be same as the allowable stress of a steel beam. 6. It was concluded that if the construction techniques in the field are developed and improved, the practicing of pre-stress to the steel structure has a promising future.

  • PDF

Applicability of Supporting Standard for a Straight Pipe System to an Elbow (직관 지지대 설치 기준의 L형관 설계 적용 가능성에 관한 연구)

  • Han, Sang-Kyu;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.8 no.2
    • /
    • pp.52-58
    • /
    • 2012
  • Pipe means the connection of the tube in order to transfer fluid from one device to another device. The piping stress analysis is to analyze the structural stability considering the location and the features of piping support after completing the piping design, The allowable stresses comply with the requirements of the relevant standards by examining whether the support of the function and location of pipe or re-operation is confirmed. Allowable stresses are to make sure that the maximum stress should not exceed the allowable stress presented in the ASME B31.1 POWER PIPING code. ASME B31.1 POWER PIPING code ensures a smooth stress analysis can be performed during the initial pipe stress analysis as provided in the case of straight pipe to the horizontal distance between the supports. However, because there is no criteria set in the case of curved pipe, the optimum pipe supporting points were studied in this paper. As mentioned about the curved pipe, loads applied to the support of the position of 17% and 83% of the position relative to the elbow part have results similar to the load acting on the support of straight pipe.

  • PDF

Effects of hardness values on the creep rupture strength in a Mod. 9Cr1Mo Steel (Mod. 9Cr1Mo 강의 크리프 강도에 미치는 경도의 영향)

  • Lee, Yeon-Su;Yu, Seok-Hyeon;Gong, Byeong-Uk;Kim, Jeong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.637-642
    • /
    • 2003
  • The Modified 9Cr-1Mo steel identified as T91, P91 and F91 in the ASME specification has been widely used for the construction of modern power plants. The available data on the influence of process parameters during manufacturing and fabrication on its properties are not sufficient. In this study, the influence of various thermal cycles on the hardness and the creep rupture strength was analyzed in the base metal and the weldments made in tube and pipe of a Mod.9Cr-1Mo steel. The low hardness, 155Hv, showed low creep rupture strength below the allowable stresses of T91 base metal in the ASME specification. This low value was attributed to the fully recovered dislocation structure and the weakening of precipitation hardening associated with the abnormal thermal cycles.

  • PDF