• 제목/요약/키워드: Allowable stresses

검색결과 170건 처리시간 0.026초

Evaluation of Allowable Bending Stress of Dimension Lumber; Confidence Levels and Size-adjustment

  • Pang, Sung-Jun;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권5호
    • /
    • pp.432-439
    • /
    • 2013
  • The aim of this study was to investigate the processes for evaluating the allowable bending stress. The confidence levels and the size-adjustment in standards were reviewed with experimental data. The results show that, (1) KS F 2152 was more strict than others overseas standards due to the higher confidence level. The 5% NTL of bending strengths by a method in KS F 2152 were lower than the overseas standards and more specimens were required for evaluating the structural properties according to KS F 2152. (2) Due to the absence of size-adjustment method in domestic standards, the specified size and the exponential parameters on the size-adjustment equation were reviewed by size factors. The specified size (width: 286 mm, length: 6096 mm), and the exponential parameters (w: 0.29, l: 0.14) will be suitable for developing the allowable bending stress in domestic standard. (3) The size adjusted allowable bending stresses of No. 2 grade Korean pine were lower than the allowable stresses tabulated in KBC even though less strict method (75% confidence level) to calculate 5% value was used. The allowable stresses tabulated in KBC are needed to be reviewed by continuous experimental data.

Structural Design of Box Beam Header

  • Jang, Sang-Sik;Park, Young-Ran;Kim, Yun-Hui
    • 한국가구학회지
    • /
    • 제18권4호
    • /
    • pp.287-295
    • /
    • 2007
  • To obtain a design data for box beams used as headers in light-frame timber construction, $2{\times}6\;(38{\times}140mm),\;2{\times}8\;(38{\times}184mm),\;2{\times}10\;(38{\times}235mm)\;and\;2{\times}12\;(38{\times}286mm)$ members were built as box beam specimens for bending tests. The allowable bending stresses for box beams were obtained through bending tests of these specimens, and span tables were calculated for various loading conditions based on the allowable bending stresses obtained. The allowable bending stresses were determined as the bending stresses at 10mm deflection of specimens from the results of bending tests of box beam specimens. Span tables for box beams were obtained assuming five loading conditions for headers used in exterior walls and two loading conditions for headers used in interior walls. Among these 7 loading conditions, 5 loading conditions applied to headers in exterior walls included the dead loads, the live loads and the snow loads and 2 loading conditions applied to headers in interior walls included the dead loads and the live loads.

  • PDF

T형 및 역T형 단면을 가지는 프리텐션부재의 프리스트레스 도입시 허용 압축응력 (Allowable Compressive Stress of Pre-Tensioned Members with Tee or Inverted Tee Sections at Transfer)

  • 이득행;이정연;임주혁;김강수
    • 콘크리트학회논문집
    • /
    • 제23권3호
    • /
    • pp.353-364
    • /
    • 2011
  • 이 연구의 선행 연구에서는 강도 이론을 바탕으로 장방형 단면을 갖는 프리텐션 부재의 허용 압축응력 계수 산정식을 제안하였다. 이 연구에서는 프리스트레스 도입시 T형 단면 및 역T형 단면을 갖는 프리텐션 부재의 허용 압축응력 계수를 결정하기 위하여 선행 연구에서 적용한 강도 이론을 바탕으로 단면의 크기, 단면 형상, 긴장재량 및 편심비를 고려한 방대한 해석을 수행하였다. 해석 결과를 바탕으로 허용 압축응력 계수 산정식을 유도하였으며, 제안된 산정식은 프리스트레스 도입시 허용 압축응력을 T형 및 역T형 단면에서 각각 당시 콘크리트 압축강도의 80% 및 70%로 제한하였고 이는 기존의 설계기준들에서 제공하는 값보다 높은 수치였다. 제안식을 검증하기 위하여 기존의 수행된 실험 결과 및 각국의 설계기준과 비교한 결과, 낮은 편심비에서 국내 외 기준은 비안전측의 결과를, 높은 편심비에서는 오히려 과도하게 안전측의 결과를 제공할 수 있는 것으로 나타났으며, 이에 비해 제안식은 T형 및 역 T형단면을 갖는 프리텐션 부재의 허용 압축응력을 매우 합리적으로 평가하였다.

국산 침엽수구조재의 허용응력설정에 관하여 - 1종 구조재를 중심으로 - (Assignment of the Allowable Design Values for Domestic Softwood Structural Lumber - Structural I-grade -)

  • 오세창
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권1호
    • /
    • pp.11-16
    • /
    • 1996
  • The purpose of this paper is to present a summary of assignment design values according to domestic softwood structural lumber grading rules. Allowable stresses for visually graded lumber were determined from basic data on small. clear specimens. The data corrected for variability such as natural defects and other factors. The procedure adopted by Japan was used for assigning allowable design values. Strength ratios in relation to each defect were taken from ASTM D 245-81. Korean pine(Pinus koraiensis S. et Z.), Korean red pine(Pinus densiflora S. et Z.), Japanese larch(Larix leptolepis Gordon) and Needle fir(Abies holophylla Max) were applied to this study. The calculated allowable stresses were same in Korean pine and Korean red pine. These values were highest in Japanese larch lowest in Needle fir. So, it is desirable for these species to be classified into different catagories Species Group. However, accurate comparison in design values on lumber grading rules among U.S., Japan and Korea was somewhat difficult. And full scale testing will be necessary for accurate determination of the correction factors to setting up design values.

  • PDF

가압기 지지대 볼트 연결부의 건전성 평가에 관한 연구 (The Assessment for Coupling Integrity of Pressurizer Support Bolting)

  • 조남진;김우창;김학중
    • 한국화재소방학회논문지
    • /
    • 제27권5호
    • /
    • pp.26-31
    • /
    • 2013
  • 원전의 가압기 지지대에 사용되는 볼트는 설계 시 안전율 측면에서 충분한 경도의 볼트를 사용하지만, 현장실사를 통해 허용 경도 범위를 초과하는 볼트가 일부 확인되었다. 이러한 높은 경도의 볼트는 응력부식 및 재료의 파괴인성이 취약하고, 가압기는 부식에 취약한 환경이므로 이 부분에 대한 검토가 필요하다. 따라서 본 연구에서는 현장실사를 통해 원전 가압기 지지대에 사용되는 볼트의 경도를 측정하였고, 이를 통해 응력부식과 부재의 파괴인성에 의한 균열을 제한할 수 있는 최대 허용응력을 계산하였다. 또한 정상운전 및 사고운전 시 발생할 수 있는 지지대 볼트의 응력을 수치해석 프로그램인 ANSYS를 사용하여 예측하였고, 이 응력이 응력부식을 제한할 수 있는 최대 허용응력 내에 있는 지 검토하였다. 검토 결과 정상 및 사고운전 조건에서 볼트의 응력은 응력부식에 대해 허용응력 안전 기준치를 만족하는 것으로 나타났다. 그러나 향후 가압기 지지대의 구조물 체결방법을 체결 절차에 반영하여 정비 시 가압기의 건전성을 확보할 수 있도록 검토가 필요하다.

프리스트레스를 단계적으로 도입하는 IPC 거더의 설계 이론 연구 (Development of a New Design Theory for Incrementally Prestressed Concrete Girder)

  • 한만엽;김진근;이차돈;박준범
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.121-130
    • /
    • 2000
  • Current engineering practice in determining sectional dimensions of prestressed concrete (PSC) girders for bridges is primarily based on the code-specified allowable concrete stresses at different loading stages. It is customary that tendons and sectional dimensions are calibrated and tendon forces are applied at once at the initial stage to keep the subsequent stresses occurring at different loading stages within the allowable stresses. This traditional tensioning method, however, usually results in a too conservative sectional depth in view of ultimate capacity of a girder. A new design method which can realize the reduction of sectional depth of PSC girders is theoretically suggested in this study. Tendons are tensioned twice at different loading stages: the initial stage and the stage after fresh slab concrete is cast. It can be shown that according to this technique, sectional depth can be significantly reduced and larger span can be realized compared to traditional ones. Parametric studies are performed with due considerations given to its practical applications.

볼트 수 변경에 따른 플랜지 커플링에 대한 구조해석 (Structural Analysis on Flange Coupling due to Change of Bolt Numbers)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제12권5호
    • /
    • pp.57-66
    • /
    • 2013
  • This study investigates structural and vibration analyses due to the change of bolt Numbers on models 1 and 2 of flange couplings connected with both sides of axis. As maximum equivalent stresses of models 1 and 2 are 122.05 and 102.3 MPa respectively by the basis of bolt, these stresses are within the allowable stress of this model and the safety of bolt design is verified. As maximum equivalent stresses of models 1 and 2 are 196.2 and 196.4 MPa respectively by the basis of body, these stresses are within the allowable stress of this model and the safety of body design is verified. Through natural frequency analysis, maximum displacements of model 1 and 2 are shown at the frequencies of 6565.1 and 6614.9 Hz respectively. Maximum displacements in cases of models 1 and 2 are shown at harmonic frequencies of 7760 and 7840 Hz at real loading conditions. By putting these study results together, the durability of vibration at model 2 with bolt numbers of 8 becomes better than model 1 with bolt numbers of 6. These study results can be effectively utilized with the design on flange coupling by anticipating and investigating prevention and durability against its damage.

Pre-stress를 도입한 Steel Beam에 관한 실험적 연구 (Experimental Study on Pre-Stresses Steel Beam)

  • 조진구;박병기
    • 한국농공학회지
    • /
    • 제17권4호
    • /
    • pp.3921-3930
    • /
    • 1975
  • This research was carried out to investigate several mechanical characteristics of pre-stressed steel beams. The configuration of specimens used for this study were as follows; a cover plate having permissible fiber stress of 4,000 kg/$\textrm{cm}^2$ was welded at bottom having the allowable bending stress 2500 kg/$\textrm{cm}^2$ steel beam, the section ratios of pre-stressed steel beam and cover plate were 0.5 and 0.6. Adopted pre-stresses were 0%, 50%, and 100% of an allowable fiber stress of a steel beam. The results obtained from the study may be summarized as follows; 1. The elastic range of a beam was increased by the application of pre-stress to the beam, which leads to a lighter section. 2. The permissible moment capacity of a pre-stressed steel beam was greated than that of a steel beam without pre-stressing. 3. The equivalent allowable stress induced by adopting the different section ratio of pre-stressed beam to cover plate were figured out 4. The optimum value of section ratio of beam and cover plate was 0.3 to 0.4 in case of a 1.5m span composite beam, a combination of an allowable stress 2,500kg/$\textrm{cm}^2$ steel beam and a permissible fiber stress 4,000 kg/$\textrm{cm}^2$ steel cover plate, was used. 5. The magnitude of the pre-stress was desirable to be same as the allowable stress of a steel beam. 6. It was concluded that if the construction techniques in the field are developed and improved, the practicing of pre-stress to the steel structure has a promising future.

  • PDF

직관 지지대 설치 기준의 L형관 설계 적용 가능성에 관한 연구 (Applicability of Supporting Standard for a Straight Pipe System to an Elbow)

  • 한상규;이재헌
    • 플랜트 저널
    • /
    • 제8권2호
    • /
    • pp.52-58
    • /
    • 2012
  • Pipe means the connection of the tube in order to transfer fluid from one device to another device. The piping stress analysis is to analyze the structural stability considering the location and the features of piping support after completing the piping design, The allowable stresses comply with the requirements of the relevant standards by examining whether the support of the function and location of pipe or re-operation is confirmed. Allowable stresses are to make sure that the maximum stress should not exceed the allowable stress presented in the ASME B31.1 POWER PIPING code. ASME B31.1 POWER PIPING code ensures a smooth stress analysis can be performed during the initial pipe stress analysis as provided in the case of straight pipe to the horizontal distance between the supports. However, because there is no criteria set in the case of curved pipe, the optimum pipe supporting points were studied in this paper. As mentioned about the curved pipe, loads applied to the support of the position of 17% and 83% of the position relative to the elbow part have results similar to the load acting on the support of straight pipe.

  • PDF

Mod. 9Cr1Mo 강의 크리프 강도에 미치는 경도의 영향 (Effects of hardness values on the creep rupture strength in a Mod. 9Cr1Mo Steel)

  • 이연수;유석현;공병욱;김정태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.637-642
    • /
    • 2003
  • The Modified 9Cr-1Mo steel identified as T91, P91 and F91 in the ASME specification has been widely used for the construction of modern power plants. The available data on the influence of process parameters during manufacturing and fabrication on its properties are not sufficient. In this study, the influence of various thermal cycles on the hardness and the creep rupture strength was analyzed in the base metal and the weldments made in tube and pipe of a Mod.9Cr-1Mo steel. The low hardness, 155Hv, showed low creep rupture strength below the allowable stresses of T91 base metal in the ASME specification. This low value was attributed to the fully recovered dislocation structure and the weakening of precipitation hardening associated with the abnormal thermal cycles.

  • PDF