• Title/Summary/Keyword: Allometric equations

Search Result 56, Processing Time 0.03 seconds

Biomass and Nutrient Stocks of Tree Components by Stand Density in a Quercus glauca Plantation (종가시나무 조림지의 임분밀도에 따른 임목 바이오매스 및 양분축적량)

  • Choi, Bong-Jun;Baek, Gyeongwon;Jo, Chang-Gyu;Park, Seong-Wan;Yoo, Byung Oh;Jeong, Su-Young;Lee, Kwang Soo;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.3
    • /
    • pp.294-302
    • /
    • 2016
  • This study was conducted to evaluate aboveground tree biomass and nutrient (C, N, P, K, Ca, and Mg) response of tree components by high (1,933 trees $ha^{-1}$) and low (1,200 tree $ha^{-1}$) stand densities in a 27-year-old Quercus glauca plantation. The study site was located in Goseong county, Gyeongsangnam-do, southern Korea. Total 12 trees (6 high and 6 low stand densities) were cut to develop allometric equations and to measure nutrient concentration of tree components. Stand density-specific allometric equations in the high and low stand densities were significant (P < 0.05) in tree components with diameter at breast height (DBH). Also, generalized allometric equations could be applied to estimate tree biomass regardless of the difference of stand density because of no significant effect on slope of stand density-specific allometric equations. Aboveground tree biomass estimated by the allometric equations was significantly higher in the high stand density (177 Mg $ha^{-1}$) than in the low stand density (114 Mg $ha^{-1}$). However, nutrient concentration of tree components was not significantly affected by the difference of stand density. Nutrient stocks in tree components were not significantly between the high stand density and the low stand density, except for the N and P stocks of stem wood. These results indicate that aboveground tree biomass could be significantly affected by stand density, but nutrient concentration among the tree components was not affected by the difference of stand density in a Quercus glauca plantation.

Allometric Equations for Crown Fuel Biomass of Pinus koraiensis Stands in Korea (잣나무림의 수관연료량 추정을 위한 상대생장식 개발)

  • Kim, Sungyong;Jang, Mina;Lee, Byungdoo;Lee, Youngjin
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.104-110
    • /
    • 2015
  • The objective of this study was to develop allometric equations for the estimation of crown fuel biomass of Pinus koraiensis in Korea. A total of twenty four representative sample trees were destructively sampled in Gapyeong, Hongcheon, and Jeongseon. Crown fuels were weighed separately for each fuel category by size class and by living and dead. The results of this study showed that the needles contributed the largest biomass (16.6 kg, 34.7%), followed by live branches with size ranging from 2~4 cm (9.0 kg, 18.9%), 1~2 cm (6.6 kg, 13.8%), <0.5 cm (5.1 kg, 10.6%), 0.5~1 cm (4.9 kg, 10.3%), and dead branches (3.2 kg, 6.8%), while the live branches with 4 cm (2.4 kg, 4.9%) as the lowest. The adjusted coefficient of determination values were the highest ($R^2_{adj}=0.6021{\sim}9742$) and standard error of estimate were the lowest (S.E.E.=0.2018~0.7271) in allometric equation $lnWt={\beta}_0+{\beta}_1lnD$. The available fuels that are consumed during crown fires (i.e., needles and twigs with diameter less than 1 cm) comprised 55.6% of the total crown fuel biomass.

Biomass Expansion Factors, Allometric Equations and Stand Biomass of Pinus thunbergii in Southern Korea (전남 여수지역 곰솔의 현존량 확장계수, 상대생장식 및 임분 현존량)

  • Park, In-Hyeop;Kim, So-Dam
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.5
    • /
    • pp.507-512
    • /
    • 2018
  • Three natural Pinus thunbergii stands in southern Korea were studied to investigate stem density, biomass expansion factors, allometric equations and stand biomass. Stand ages of stand 1, 2 and 3 were 15, 29 and 45 years old, respectively. Three $10m{\times}10m$ plots were set up, five sample trees were cut and roots of three sample trees were excavated for dimension analysis in each stand. Stem density of stand 1, 2 and 3 were $0.450g/cm^3$, $0.440/cm^3$ and $0.457g/cm^3$, respectively, and there was no significant difference among the three stands. Biomass expansion factors of above-ground and total tree decreased with increasing stand age. Above-ground biomass expansion factor of stand 1 was significantly higher than those of stand 2 and 3, and total tree biomass expansion factor of stand 1 was significantly higher than that of stand 3. Allometric equations were developed for the 15 sample trees of the three stands based on D or $D^2H$. Above-ground biomass of stand 1, 2 and 3 were 50.72t/ha, 89.92t/ha, 194.07t/ha, respectively, and total tree biomass of stand 1, 2 and 3 were 61.62t/ha, 113.12t/ha, 248.36t/ha, respetively.

Allometry, Biomass and Productivity of Quercus Forests in Korea: A Literature-based Review

  • Li, Xiaodong;Yi, Myong-Jong;Son, Yo-Whan;Jin, Guangze;Lee, Kyeong-Hak;Son, Yeong-Mo;Kim, Rae-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.726-735
    • /
    • 2010
  • Publications with the data on allometric equation, biomass and productivity of major oak forests in Korea were reviewed. Different allometric equations of major oak species showed site- or speciesspecific dependences. The biomass of major oak forests varied with age, dominant species, and location. Aboveground tree biomass over the different oak species was expressed as a power equation of the stand age. The proportion of tree component (stem, branch and leaf) to total aboveground biomass differed among oak species, however, biomass ranked stem > branch > leaf in general. The leaf biomass allocation over the different oak species was expressed as a power equation of total aboveground biomass while there were no significant patterns of biomass allocation from stem and branch to the aboveground biomass. Tree root biomass continuously increased with the aboveground biomass for the major oak forests. The relationship between the root to shoot ratio and the aboveground tree biomass was expressed by a logarithmic equation for major oak forests in Korea. Thirteen sets of data were used for estimating the net primary production (NPP) and net ecosystem production (NEP) of oak forests. The mean NPP and NEP across different oak forests was 10.2 and 1.9 Mg C $ha^{-1}year^{-1}$. The results in biomass allocation, NPP and NEP generally make Korean oak forests an important carbon sinks.

Richness of Forest Stands and Atmospheric Carbon Dioxide Storage in Urban Institutional Lands of Bukavu, D.R. Congo

  • KADIATA, Bakach D.;NDAMIYEHE, J.B. Ncutirakiza
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.2
    • /
    • pp.79-90
    • /
    • 2017
  • Improving the urban environmental quality relies mainly on the increasing of urban forests capacity to store carbon dioxide. This study assesses the floristic diversity of urban institutional lands in Bukavu and their potential to reduce atmospheric $CO_2$. An exhaustive inventory over three sites ($Coll{\grave{e}}ge$ Alfajiri, $Cath{\acute{e}}drale$ Notre-Dame de la Paix and Institut $Sup{\acute{e}}rieur$ $P{\acute{e}}dagogique$) of Bukavu led to the identification of 1,113 trees of which the diameter at breast height (1.30 m) ranged from 4.9 to 161 cm. Results reveal a floristic diversity made up of 4 families of conifers with 4 species and 14 of broadleaves with 21 species. Average densities were of $54trees\;ha^{-1}$ and $5.21m^2\;ha^{-1}$ of basal area. Urban-based allometric equations used yielded up to 312.8 tons of carbon stored in trees aboveground biomass equivalent to 1,147.9 tons of $CO_2$ reduced from the atmosphere over the three sites. The rate of carbon storage reaches $15.1tons\;ha^{-1}$. Thus, trees of the three institutional sites in Bukavu play an important role in reducing atmospheric $CO_2$ and contribute, thereby, to mitigate global climate change effects. Given the current environmental challenge associated with high population growth rate in cities, the urban forest ecosystem in DRC requires to be extended and further investigation.

Changes in Biomass of Salix subfragilis and S. chaenomeloides with Stand Ages in a Riparian Zone of a Sand-bed Stream (하천 하안대에서 입지 연령에 따른 선버들과 왕버들의 생물량 변화)

  • Cho, Hyung-Jin;Jin, Seung-Nam;Cho, Hyunsuk;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.3
    • /
    • pp.149-155
    • /
    • 2017
  • Willow plants are representative biomaterials used in river restoration and main target trees in stream managements. In order to understand the changes in the growth of Salix subfragilis and S. chaenomeloides with their stand ages, we investigated the density, height and basal area of stems and biomass at their different aged stands of the riparian zone of the sand-bed stream, the Nakdong River, Korea. We also developed allometric equations for estimating the biomass of these two species by establishing the relationship between diameter at breadth height and tree height with above-ground biomass. The stem density showed a sharp decrease for 3 years after germination for S. subfragilis and 6 years for S. chaenomeloides, resulting in strong self-thinning. The stem height of the two species increased to 7.5 m in 15 years for S. subfragilis, and to 14 m in 13 years for S. chaenomeloides. Aboveground biomass also increased rapidly at the early stage of growth. The biomass increased to 17 ton DM/ha in 13 years for S. subfragilis and to 1,110 ton DM / ha in 13 years for S. chaenomeloides. It is expected that the allometric equations of two Salix species derived from this study will be applied to the objectively estimating the biomass of willow plants for the management of floodplain trees in streams.

Development of Allometric Equations for V Age-class Pinus koraiensis in Mt. Taehwa Plantation, Gyeonggi-do (경기도 태화산 V 영급 잣나무(Pinus koraiensis) 조림지의 지상부 바이오매스 상대생장식 개발)

  • Ryu, Daun;Moon, Minkyu;Park, Juhan;Cho, Sungsik;Kim, Taekyu;Kim, Hyun Seok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • Allometric equations for leaf, branch, stem and total above ground biomass of Pinus koraeinsis trees were developed with diameter at breast height(DBH) of trees, which were growing in a pine plantation with the stand density of 410 tree $ha^{-1}$ and the average DBH of $29.1{\pm}5.2$ cm in Mt. Taewha, Gyeonggi. Damage by Acantholyda parki reduced leaf biomass compared to other studies, however, its contribution to total biomass was minimal among parts. Comprehensive analysis revealed that constant in allometric equation for total above ground biomass (logY=a + blogX) was affected by average DBH and stand density, however, constant b was not. At the stand level, biomass for leaf, brach, stem, total above ground biomass were 6.68 Mg $ha^{-1}$, 18.82 Mg $ha^{-1}$, 101.02 Mg $ha^{-1}$, 126.53 Mg $ha^{-1}$, respectively. We developed a Korean pine stand biomass regression, which explained about 98% of variation with DBH and stand density based on comprehensive analysis.

A Study of Improvement on Estimation Methodology of Carbon Storage amount by Damaged Trees for Environmental Impact Assessment (환경영향평가 온실가스 항목 내 훼손수목의 탄소저장량 평가 개선을 위한 제언)

  • Heon Mo Jeong;Hae Ran Kim;Dukyeop Kim;Inyoung Jang;Sung-Ryong Kang
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.330-340
    • /
    • 2022
  • We deduced the proper estimation methodology for the amount of carbon sequestration by damaged trees for Environmental Impact Assessment (EIA). The nine development projects related to renewable energy, damaged trees occur, assessment status and used method of evaluating the carbon storage of damaged trees were summarized. And after re-calculating the carbon storage of damaged trees through allometric equations, the difference between the two groups, re-calculated the damaged trees carbon storage and the damaged trees carbon storage in the report, was validated. As a result, damaged trees carbon storage in words was more than the re-calculated damaged trees carbon storage, and it was statistically significant (p<0.005). This result means that the existing method for calculating damaged tree carbon storage is overcalculated. It was judged that it was necessary to improve the calculation method. Therefore, allometric equations suitable for each dominated-tree species should be used when calculating the damaged tree carbon storage. Furthermore, we propose to establish a carbon storage calculation system based on actual data from the ecosystem so that researchers can efficiently and accurately the damaged trees carbon storage.

Aboveground biomass estimation of Quercus glauca in evergreen forest, Kotzawal wetland, Cheju Island, Korea (제주도 곶자왈 상록활엽수 종가시나무의 생물량 추정을 위한 상대생장식)

  • Jeong, Heon-Mo;Kim, Hae-Ran;Cho, Kyu-Tae;Lee, Seung-Hyuk;Han, Young-Sub;You, Young-Han
    • Journal of Wetlands Research
    • /
    • v.16 no.2
    • /
    • pp.245-250
    • /
    • 2014
  • This study developed allometry equation and estimated the aboveground-biomass of Quercus glauca, a warm-temperature, evergreen broad-leaved tree, growing in Kotzawal wetland located on Jeju Island. The allometric equations between DBH(diameter at breast height) and dry weights of stems (Ws), branches (Wb), leaves (Wl) and aboveground biomass (Wab) of Q. glauca were as follows: logWs=2.4042logDBH-1.3045, logWb=2.6436logDBH-1.6232, logWl =1.5428logDBH-1.3692 and logWab=2.3324logDBH-0.9181. The allometric equations between $D^2H$ and Ws, Wb, Wl, and Wab of Q.glauca were as follows : logWs=$0.853logD^2H-1.4252$, logWb=$0.8453logD^2H-1.5834$, logWl=$0.5328logD^2H-1.4073$ and logWab=$0.8453logD^2H-1.0327$. The $R^2$ between DBH and Ws, Wb, Wl and Wab were 0.9873, 0.9711, 0.7979 and 0.993, respectively. The $R^2$ between $D^2H$ and Ws,Wb,Wl and Wab were 0.9841, 0.9174, 0.7537 and 0.9876, respectively. There was no significant difference between observed and calculated values of the allomatric equations from DBH and $D^2H$(p>0.05, Kolmogorov-Smirnov test). Thus, to estimate the aboveground biomass of Q. glauca, use of DBH and $D^2H$ as an independent variables in the allometric equation is recommended.

Assessment of Canopy Fuel Characteristics for Five Major Coniferous Species in Korea (우리나라 주요 침엽수종의 수관층 연료특성 평가)

  • Kim, Sungyong;Jang, Mina;Lee, Byungdoo;Lee, Youngjin
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.2
    • /
    • pp.247-254
    • /
    • 2013
  • The objective of this study was to assess the canopy fuel characteristics of five major coniferous species in Korea. This study was also developed allometric equations for the canopy fuel load and canopy base height of the major coniferous species using the allomeric equations of biomass developed by the Korea Forest Research Institute and the data from the $5^{th}$ National Forest Inventory. Among the major coniferous fuel types, Pinus koraiensis stands had the highest mean canopy bulk density, 0.34 kg/$m^3$, followed by Gangwon region Pinus densiflora stands 0.28 kg/$m^3$, Pinus thunbergii stands 0.24 kg/$m^3$, Pinus rigida stands 0.15 kg/$m^3$, Central region Pinus densiflora stands 0.12 kg/$m^3$ and Larix leptolepis stands 0.09 kg/$m^3$. The adjusted multiple coefficient of determination of the developed models ranged from 0.6321 to 0.9950 for canopy fuel load and 0.6390 to 0.8539 for canopy base height.