• Title/Summary/Keyword: Allocation of Communication Resources

Search Result 160, Processing Time 0.023 seconds

Risk Management System based on Grid Computing for the Improvement of System Efficiency (시스템 효율성 증대를 위한 그리드 컴퓨팅 기반의 위험 관리 시스템)

  • Jung, Jae-Hun;Kim, Sin-Ryeong;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.283-290
    • /
    • 2016
  • As the development of recent science and technology, high-performance computing resources is needed to solve complex problems. To reach these requirements, it has been actively studied about grid computing that consist of a huge system which bind a heterogeneous high performance computing resources into on which are geographically dispersed. However, The current research situation which are the process to obtain the best results in the limited resources and the scheduling policy to accurately predict the total execution time of the real-time task are very poor. In this paper, in order to overcome these problems, we suggested a grid computing-based risk management system which derived from the system structure and the process for improving the efficiency of the system, grid computing-based working methodology, risk policy module which can manage efficiently the problem of the work of resources(Agent), scheduling technique and allocation method which can re-allocate the resource allocation and the resources in problem, and monitoring which can manage resources(Agent).

Optimized Relay Selection and Power Allocation by an Exclusive Method in Multi-Relay AF Cooperative Networks

  • Bao, Jianrong;Jiang, Bin;Liu, Chao;Jiang, Xianyang;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3524-3542
    • /
    • 2017
  • In a single-source and multi-relay amplify-forward (AF) cooperative network, the outage probability and the power allocation are two key factors to influence the performance of an entire system. In this paper, an optimized AF relay selection by an exclusive method and near optimal power allocation (NOPA) is proposed for both good outage probability and power efficiency. Given the same power at the source and the relay nodes, a threshold for selecting the relay nodes is deduced and employed to minimize the average outage probability. It mainly excludes the relay nodes with much higher thresholds over the aforementioned threshold and thus the remainders of the relay nodes participate in cooperative forwarding efficiently. So the proposed scheme can improve the utility of the resources in the cooperative multi-relay system, as well as reduce the computational complexity. In addition, based on the proposed scheme, a NOPA is also suggested to approach sub-optimal power efficiency with low complexity. Simulation results show that the proposed scheme obtains about 2.1dB and 5.8dB performance gain at outage probability of $10^{-4}$, when compared with the all-relay-forward (6 participated relays) and the single-relay-forward schemes. Furthermore, it obtains the minimum outage probability among all selective relay schemes with the same number of the relays. Meanwhile, it approaches closely to the optimal exhaustive scheme, thus reduce much complexity. Moreover, the proposed NOPA scheme achieves better outage probability than those of the equal power allocation schemes. Therefore, the proposed scheme can obtain good outage probability, low computational complexity and high power efficiency, which makes it pragmatic efficiently in the single-source and multi-relay AF based cooperative networks.

Prioritized Resource Allocation in Wireless Spectrum Pooling

  • Biglieri, Ezio;Lozano, Angel;Alrajeh, Nabil
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.495-500
    • /
    • 2012
  • A standard paradigm for the allocation of wireless resources in communication demands symmetry, whereby all users are assumed to be on equal footing and hence get equal shares of communication capabilities. However, there are situations in which "prime users" should be given higher priority, as for example in the transmission of emergency messages. In this paper, we examine a prioritization policy that can be implemented at the physical layer. In particular, we evaluate the performance of a prioritized transmission scheme based on spectrum pooling and on the assignment of higher signal-to-noise ratio channels to higher-priority users. This performance is compared to that of unprioritized (or "symmetric") schemes, and the impact of prioritization on the unprioritized users is discussed.

Resource Allocation for Guaranteeing QoE in Mobile Communication Networks

  • Lee, Moon-Ho;Lee, Jong-Chan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.45-50
    • /
    • 2017
  • This paper proposes a novel resource allocation scheme which allows to guarantee the user-perceived service quality for various high-quality mobile multimedia service such as interactive game, tactile internet service, remote emergency medical service or remote disaster handling robot control to a certain level in the mobile networks. In our proposed scheme, Mean Opinion Score(MOS), which represents the degree of user satisfaction for perceived quality, is determined based on the delay limit allowable to each service. Moreover resources are allocated in consideration of this MOS. Simulation results show that our proposed scheme can decrease the outage probability in comparison with existing schemes Moreover it can increase the total throughput as well.

Resource Allocation Algorithm for Differentiated Multimedia Services Using Came Theory (게임이론을 이용한 멀티미디어 서비스의 차별적 자원 할당 알고리즘)

  • Shin, Kwang-Sup;Jung, Jae-Yoon;Suh, Doug-Young;Kang, Suk-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.1
    • /
    • pp.39-59
    • /
    • 2009
  • Game theory is adapted to a variety of domains such as economics, biology, engineering, political science, computer science, and philosophy in order to analyze economic behaviors. This research is an application of game theory to wireless communication. In particular, in terms of bargaining game we dealt with a multimedia resource allocation problem in wireless communication, which is rapidly spreading such as Wibro, WCDML, IPTV, etc. The algorithm is assumed to allocate multimedia resources to users who can choose and access differentiated media services. For this purpose, 3 utility function of users is devised to reflect quality of service (QoS) and price. We illustrated experimental results with synthesis data which were made to mimic real multimedia data, and analyzed differentiated service providing and the effect of the utility function.

Resource Allocation Algorithm for Differentiated Multimedia Services using Game Theory (게임이론을 이용한 멀티미디어 서비스의 차별적 자원 할당 알고리즘)

  • Sin, Gwang-Seop;Jeong, Jae-Yun;Seo, Deok-Yeong;Gang, Seok-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2008.10a
    • /
    • pp.164-178
    • /
    • 2008
  • Game theory is adapted to a variety of domains such as economics, biology, engineering, political science, computer science, and philosophy in order to analyze economic behaviors. This research is an application of game theory to wireless communication. In particular, in terms of bargaining game we dealt with a multimedia resource allocation algorithm in wireless communication, which is rapidly spreading such as Wibro, WCDML, IPTV, etc. The algorithm is assumed to allocate multimedia resources to users who can choose and access differentiated media services. For this purpose, a utility function of users is devised to reflect quality of service (QoS) and price. We illustrated experimental results with synthesis data which were made to mimic real multimedia data, and analyzed differentiated service providing and the effect of the utility function.

  • PDF

Improved Scheduling Approach IN SC-FDMA

  • Elshakwi, Saleh.Y.;Abdulrahman, Tarek
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.6
    • /
    • pp.350-356
    • /
    • 2013
  • Single Carrier Frequency Domain Multiple Access (SC-FDMA) has proven to be the best long term evolution for uplink multiple access because of its low Peak to Average Power Ratio (PAPR), a feature that leads to low power consumption. This is achievable only if the resource allocation is performed in a contiguous manner. This paper proposes a new approach with an improvement in the global resources allocation. The new approach presented utilizes the gain function, which adopts some of the procedures deduced from the older Recursive Maximum Expansion (RME) algorithm. The experiment proved that the new approach is better than the original RME algorithms and in most cases, is closer to the optimal solution.

  • PDF

HetNet Characteristics and Models in 5G Networks

  • Alotaibi, Sultan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2022
  • The fifth generation (5G) mobile communication technology is designed to meet all communication needs. Heterogeneous networks (HetNets) are a new emerging network structure. HetNets have greater potential for radio resource reuse and better service quality than homogeneous networks since they can evolve small cells into macrocells. Effective resource allocation techniques reduce inter-user interference while optimizing the utilization of limited spectrum resources in HetNets. This article discusses resource allocation in 5G HetNets. This paper explains HetNets and how they work. Typical cell types in HetNets are summarized. Also, HetNets models are explained in the third section. The fourth component addresses radio resource control and mobility management. Moreover, future study in this subject may benefit from this article's significant insights on how HetNets function.

Performance Evaluation of Scheduling Algorithms according to Communication Cost in the Grid System of Co-allocation Environment (Co-allocation 환경의 그리드 시스템에서 통신비용에 따른 스케줄링 알고리즘의 성능 분석)

  • Kang, Oh-Han;Kang, Sang-Seong;Kim, Jin-Suk
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.99-106
    • /
    • 2007
  • Grid computing, a mechanism which uses heterogeneous systems that are geographically distributed, draws attention as a new paradigm for the next generation operation of parallel and distributed computing. The importance of grid computing concerning communication cost is very huge because grid computing furnishes uses with integrated virtual computing service, in which a number of computer systems are connected by a high-speed network. Therefore, to reduce the execution time, the scheduling algorithm in grid environment should take communication cost into consideration as well as computing ability of resources. However, most scheduling algorithms have not only ignored the communication cost by assuming that all tasks were dealt in one cluster, but also did not consider the overhead of communication cost when the tasks were processed in a number of clusters. In this paper, the functions of original scheduling algorithms are analyzed. More importantly, the functions of algorithms are compared and analyzed with consideration of communication cost within the co allocation environment, in which a task is performed separately in many clusters.

Joint Mode Selection, Link Allocation and Power Control in Underlaying D2D Communication

  • Zhang, Wei;He, Wanbing;Wu, Dan;Cai, Yueming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5209-5228
    • /
    • 2016
  • Device-to-device (D2D) communication underlaying cellular networks can bring significate benefits for improving the performance of mobile services. However, it hinges on elaborate resource sharing scheme to coordinate interference between cellular users and D2D pairs. We formulate a joint mode selection, link allocation and power control optimization problem for D2D communication sharing uplink resources in a multi-user cellular network and consider the efficiency and the fairness simultaneously. Due to the non-convex difficulty, we propose a three-step scheme: firstly, we conduct mode selection for D2D pairs based on a minimum distance metric after an admission control and obtain some cellular candidates for them. And then, a cellular candidate will be paired to each D2D pair based on fairness. Finally, we use Lagrangian Algorithm to formulate a joint power control strategy for D2D pairs and their reused cellular users and a closed-form of solution is derived. Simulation results demonstrate that our proposed algorithms converge in a short time. Moreover, both the sum rate of D2D pairs and the energy efficiency of cellular users are improved.