• Title/Summary/Keyword: Allium victorialis var. platyphyllum (AVP)

Search Result 2, Processing Time 0.017 seconds

Determination of Flavonoids from Allium victorialis var. platyphyllum and Their Effect on Gap Junctional Intercellular Communication

  • Hong, Eun-Young;Choi, Soo-Im;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.747-752
    • /
    • 2007
  • This study was carried out to identify and quantify the flavonoids from 6 different plant parts of Allium victorialis var. platyphyllum (AVP), including the flower, leaf, root, stem, flower stalk, and flower seed, using liquid chromatography/ mass spectrometry. Two major flavonoids were structurally identified as quercetin (3,5,7,3'4,'-pentahydroxyflavone) and kaempferol (3,5,7,4'-tetrahydroxyflavone) at contents of 11.8-25.8 and $6.0-64.4\;{\mu}g/mL$, respectively. In particular, the flower and root plant parts contained the highest amounts of quercetin and kaempferol compared to the other parts. We also assessed the recovery effects of each plant-part extract of AVP on gap junctional intercellular communication (GJIC) in WB-F344 cells by the scrape-loading and dye transfer (SL/DT) method. According to the results, GJIC was reduced by approximately 70.2% ($62.3{\pm}12.5$ cells) compared to the control ($209{\pm}9.5$ cells, 100%) when 12-O-tetradecanoylphorbol-13-acetate (TPA) was treated alone in the WB-F344 rat liver epithelial cells. However, the stem extract (0.2 mg/mL) restored GJIC to basal levels (92%, $204{\pm}2.3$ cells, p<0.01) and the flower extract (0.2 mg/mL) stimulated GJIC to 82.5% ($172.6{\pm}8.3$ cells, p<0.05), when applied together with the TPA.

Inhibitory Effects of Allium victorialis var.platyphyllum Extracts on Platelet Aggregation and Vascular Smooth Muscle Cell Proliferation

  • Kim, Gun-Hee;Jin, Yong-Ri;You, Soon-Hyang;Han, Hyeong-Jun;Lee, Jung-Jin;Yu, Ji-Yeon;Im, Ji-Hyun;Park, Eun-Suk;Kim, Tack-Joong;Hong, Eun-Young;Yun, Yeo-Pyo
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.247-250
    • /
    • 2008
  • The $CHCl_3$, EtOAc, and n-BuOH fractions showed a marked inhibition of 5% fatal bovine serum (FBS)-induced cell proliferation. The $IC_{50}$ values of the chloroform fractions from leaf, stem, and root as well as the n-BuOH and EtOAc fraction from root on cell proliferation were $1.2{\pm}0.4$, $17.2{\pm}6.4$, $81.8{\pm}33.2$, $40.8{\pm}8.0$, and $237.1{\pm}85.6\;{\mu}g/mL$, respectively. On the other hand, the EtOAc fractions, and the $CHCl_3$ fraction significantly inhibited collagen-, arachidonic acid-, U46619-, and thrombin-induced platelet aggregations. The $IC_{50}$ values of EtOAc fraction from leaf, and the $CHCl_3$ and EtOAc fraction from stem were $214.1{\pm}12.2$, $134.3{\pm}2.5$, and $42.6{\pm}7.0\;{\mu}g/mL$ with collagen, $312.4{\pm}7.5$, $158.9{\pm}1.7$, and $82.2{\pm}2.7\;{\mu}g/mL$ with arachidonic acid, $31.1{\pm}2.4$, $48.7{\pm}0.3$, and $29.7{\pm}1.1\;{\mu}g/mL$ with U46619, and $36.7{\pm}2.4$, $69.1{\pm}11.3$, and $34.2{\pm}0.1\;{\mu}g/mL$ with thrombin, respectively. Taken together, these data provide new evidence that fractions from Allium victorialis var. platyphyllum (AVP) are able to inhibit vascular smooth muscle cell (VSMC) proliferation and platelet aggregation, which may be a novel resource for the development of anti-atherothrombotic agents.