• Title/Summary/Keyword: All-wheel-drive Tractor

Search Result 4, Processing Time 0.019 seconds

Development of a Simulation Model for an 80 kW-class Electric All-Wheel-Drive (AWD) Tractor using Agricultural Workload (농작업 부하 데이터를 활용한 80 kW급 전기구동 AWD 트랙터의 시뮬레이션 모델 개발)

  • Baek, Seung Yun;Kim, Wan Soo;Kim, Yeon Soo;Kim, Yong Joo;Park, Cheol Gyu;An, Su Cheol;Moon, Hee Chang;Kim, Bong Sang
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.27-36
    • /
    • 2020
  • The aim of this study is to design a simulation model for an electric All-Wheel-Drive (AWD) tractor to evaluate the performance of the selected component and agricultural work ability. The electric AWD tractor consists of four motors independently for each drive wheel, and each motor is combined with an engine generator, a battery pack, and reducers. The torque data of a 78 kW-class tractor was measured during plow tillage and driving operation to develop a workload cycle. A simulation model was developed by using commercial software, Simulation X, and it used the workload as the simulation condition. As a result of simulation analysis, the drive system, including an electric motor and reducers, was able to cope with high load during plow tillage. The SOC (State of Charge) level was influenced by the output power of the motor, and it was maintained in the range of 50~80%. The fuel consumed by the engine was about 18.23 L during working on a total of 8 fields. The electric AWD tractor was able to perform agricultural work for about 7 hours. In the future study, the electric AWD tractor will be developed reflecting the simulation condition. Research on the comparison between the simulation model and the electric AWD tractor should be performed.

Work load analysis for determination of the reduction gear ratio for a 78 kW all wheel drive electric tractor design

  • Kim, Wan-Soo;Baek, Seung-Yun;Kim, Taek-Jin;Kim, Yeon-Soo;Park, Seong-Un;Choi, Chang-Hyun;Hong, Soon-Jung;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.613-627
    • /
    • 2019
  • The purpose of this study was to design a powertrain for a 78 kW AWD (all wheel drive) electric tractor by analyzing the combination of various reduction gear ratios on a commercial motor using data from actual agricultural work and driving conditions. A load measurement system was constructed to collect data using wheel torque meters, proximity sensors, and a data acquisition system. Field experiments for measuring load data were performed for two environmental driving conditions (on asphalt and soil) and four agricultural operations (plow tillage, rotary tillage, loader operation, and baler operation). The attached implements and gear stages were selected through farmer surveys. The range of the reduction ratio was determined by selecting the minimum reduction ratio needed to satisfy the torque condition required for agricultural operations and the maximum reduction gear ratio to satisfy the maximum travel speed. The minimum reduction gear ratio selected was 57 in consideration of the working load condition and the maximum reduction gear ratio selected was 62 considering the maximum running speed. In the range of the reduction gear ratio 57 - 62, the selected motor satisfied all working torque conditions. As a result, the combination of the selected motor and reduction gear ratio was applicable for satisfying the loads required during agricultural operation and driving operation.

Analysis of Traction Performance for Agricultural Tractor According to Soil Condition (토양 조건에 따른 농업용 트랙터의 견인 성능 분석)

  • Lee, Nam Gyu;Kim, Yong Joo;Baek, Seung Min;Moon, Seok Pyo;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Traction performance of a tractor varies depending on soil conditions. Sinkage and slip of the driving wheel for tractor frequently occur in a reclaimed land. The objective of this study was to develop a tractor suitable for a reclaimed land. Traction performance was evaluated according to soil conditions of reclaimed land and paddy field. Field experiments were conducted at two test sites (Fields A: paddy field; and Field B: reclaimed land). The tractor load measurement system was composed of an axle rotation speed sensor, a torque meter, a six-component load cell, GPS, and a DAQ (Data Acquisition System). Soil properties including soil texture, water content, cone index, and electrical conductivity (EC) were measured. Referring to previous researches, the tractor traveling speed was set to B3 (7.05 km/h), which was frequently used in ridge plow tillage. Soil moisture contents were 33.2% and 48.6% in fields A and B, respectively. Cone index was 2.1 times higher in field A than in field B. When working in the reclaimed land, slip ratios were about 10.5% and 33.1% for fields A and B, respectively. The engine load was used almost 100% of all tractors under the two field conditions. Traction powers were 31.9 kW and 24.2 kW for fields A and B, respectively. Tractive efficiencies were 83.3% and 54.4% for fields A and B, respectively. As soil moisture increased by 16.4%, the tractive efficiency was lowered by about 28.9%. Traction performance of tractor was significantly different according to soil conditions of fields A and B. Therefore, it is necessary to improve the traction performance of tractor for smooth operations in all soil conditions including a reclaimed land by reflecting data of this study.

Forest Soil Characteristics and their Effects on the Trafficability of Logging Vehicles (산림토양(山林土壤) 특성(特性)이 집재차량(集材車輛)의 주행성(走行性)에 미치는 영향(影響))

  • Kim, Ki Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.255-265
    • /
    • 1999
  • This study deals with forest soil characteristics and their effects on the trafficability of logging vehicles. The study area is the national experimental forest located in Kwangnung. This site has 20m length and is equally divided by 5 surveying ranges with 4m width, on which a tractor(FIATAGRI) attached with logging boogie can drive in 4 driving types, namely 1time-return unload, 1time-return with load of 780-790kg weight of 3 logs, 5 and 10times-return with same load. After one driving type on all surveying ranges, the soil hardness is surveyed 5 times with 3 several type tools, SHM-1 type, lang penetrometer(L-PNTM), and clegg impact soil tester(CIST). A disturbed degree of cover vegetation and sliding conditions of vehicle are also observed. As results, the soil type of the test site was SC by USCS and dry brown forest soil. The cover vegetation is gotten trambled under driving after 3-5 times-return, shrubs leaves are fully fallen and their bark are peeled, and after 10 times-return the cover vegetations were nearly disappeared. The test vehicle has neither slided nor was overthrown. The wheel tracks in the 1-3 ranges, of which unit weight(gd, gt) is high and soil moisture content(MC) is low, were only 1-2cm deep, but those in the 4-5 ranges, of which the gd, gt is low and the MC is high, were 5-7cm deep. In the soil hardness test, which was established in 5 test ranges by types of driving, the more driving times, the higher the hardness. The soil hardness surveyed by L-PNTM has changed slowly and that surveyed by SHM-1 type has risen sharply. In the ranges with higher specific gravity(Gs), higher unit weight, lower MC and higher liquid limit(LL) and plasticity index(PI) was the soil hardness high and the trafficability was good. In the ranges with opposite conditions, also in the ranges of the lower soil hardness, the trafficability must be not good, because the wheel track may be deep. The results from CIST attached with 4kg hammer was not better than expected. So it is recommended to use CIST with 2.5kg or 0.5kg hammer.

  • PDF