• Title/Summary/Keyword: All-trans retinoic acid

Search Result 86, Processing Time 0.032 seconds

Differentiation Effect of Marine Natural Compounds on F9 Teratocarcinoma Stem Cells (F9 기형암종 세포에 대한 해양천연물질의 분화 유도 작용)

  • Kim, Li-La;Baek, Jin-Hyen;Cho, Yong-Jin;Son, Byung-Wha;Choi, Hong-Dae;Kim, Kyu-Won
    • YAKHAK HOEJI
    • /
    • v.40 no.6
    • /
    • pp.690-696
    • /
    • 1996
  • It has been known that many kinds of cancer are caused by continued proliferation or abnormal differentiation. Thus, recent approaches to anticancer therapy have been focused on developing drugs that induce differentiation of cancer cells to normal cells. A typical differentiation agent, all trans-retinoic acid, is unsuitable for anticancer drug because all trans-retinoic acid produces unfavorable side effects and cytotoxicity in normal cells. Therefore, we have screened some new differentiation-inducing compounds obtained from marine organisms using F9 teratocarcinoma stem cells as a model system. We observed that fatty acid. glycolipid, saponin, sphingosine and sterol compounds of marine organisms had differentiation-inducing activity in F9 cells, were determined by morphological changes and Northern blot analysis. The expression of differentiation marker genes, such as laminin B1, type IV collagen and retinoic acid receptor beta were induced by treatment with those compounds.

  • PDF

Preparation and Drug Release of All-Trans Retinoic Acid-Loaded Poly(L-lactic acid) Nanoparticles (레티노산 함유 폴리락탄산 나노입자의 제조 및 약물 방출)

  • Chae, Ji-Man;Lee, Kyung-Man;Kim, In-Sook;Lee, Yong-Bok;Shin, Sang-Chul;Oh, In-Joon
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.5
    • /
    • pp.401-406
    • /
    • 2004
  • To develop an intravenous delivery system of all-trans retinoic acid (ATRA) for the cancer therapy, poly(L-lactic acid) nanoparticles were prepared and characterized. Emulsification-solvent evaporation method was chosen to prepare submicron sized nanoparticles. Spherical nanoparticles less than 200 nm in diameter with narrow size distribution were prepared, and the entrapment efficiency of drug was more than 95%. The endothermic peak at $183^{\circ}C$ and X-ray crystallographic peak of ATRA appeared in the nanoparticle system, suggesting the inhibition of crystallization of ATRA by polymer adsorption during the precipitation process. ATRA was released at $37^{\circ}C$ for 60 days and the release rate was dependent on the concentration of drug incorporated in the nanoparticles. While ATRA was unstable in the light, it was very stable at $4^{\circ}C$. These results suggest the usefulness of PLA nanoparticles as a sustained and prolonged release carrier for ATRA.

The Dffects of Retinoids on CRABPII cRNA Induction amd Collagen Synthesis on Human Dermal Fibroblast

  • jae-Sung Hwang;iyo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.23 no.3
    • /
    • pp.9-23
    • /
    • 1997
  • Retinoids are essential regulators of spithelial cell growth and celluar differentiation. They are also known to be effective in photoaging. It was reported that topical application of retinoic acid improves facial wrinkle carsed by collagen synthesis reduction in photodamaged skin. Collagen synthesis by retinoic acid may contribute to the wrinkle effacement. Since celluar retinoic acid binding protein II is slsctively induced in human skin and dermal fibroblasts in vitro by retinoic acid, this response can be used to mesure retinoids potency and activity. In order to know the activity of retinoids and their relations with collagen synthesis, we treated dermal fibroblasts with retinoids for 48 hours at 10-6-10-7M and measured CRABPII mRNA level by quantitative Nortern blotting. We also measured the rate of collagen systhesis by retinoids using 3-dimensional dermal equivalent. CRABPII mRNA level was increased 3-fold by retinoic acid, 2.1-fold by retinol and 1.4-fold by retinaldehyde. Collagen systhesis was increased 34% by all-trans retinioc acid, 26% by retinol, 17% by retinaldehyde and 7% by retinyl palmitate. From the above results, retinoids were found to be a potent indecers of CRABPII mRNA and collagen synthesis. Though retinoic acid was the most effective, its use has been restricted because of the side effects. Instead, retinol can be a best candidate in cosmetics for the treatment of photodamaged skin in terms of efficacy and safety.

  • PDF

Effect of Retinoic Acid, Thyroid Hormone and Hydrocortisone on Viability and Differentiation in SK-N-SB Neuroblastoma Cell Lines (Neuroblastoma세포의 생존과 분화에 미치는 retinoic acid, thyroid hormone, 및 hydrocortisone의 작용)

  • 이경은;배영숙
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.285-292
    • /
    • 2000
  • The effects of the members of the same nuclear receptor superfamily (all-trans retinoic acid (RA), thyroid hormone(T3) or hydrocortisone) on proliferation and differentiation in the SK-N-SH neuroblastoma (NB) cell lines were studied. NB cells were treated with RA, T3, or hydrocortisone at concentration of 10$^{-6}$ M or 10$^{-8}$ M for 3 days or 7 days. RA induced concentration- and time-dependent morphologic differentiation(neurite outgrowth and microtubule-associated protein expression) and growth inhibition in NB cells. Treatment of 10$^{-7}$ M T3 for 7 days increased viability and differentiation of NB cells. Treatment of 10$^{-6}$ M hydrocortisone for 7 days increased viability of NB cells. Although these three effectors are members of the same receptor superfamily, the regulation of brain development may be carried out in a different manner.

  • PDF

Effect of Retinoids on Human Breast Cancer Cells (인체 유방암 세포에서 retinoids의 영향에 대한 연구)

  • 윤현정;신윤용;공구
    • Environmental Mutagens and Carcinogens
    • /
    • v.24 no.2
    • /
    • pp.51-66
    • /
    • 2004
  • Retinoids, better known as vitamin A, have been reported to inhibit the growth of several breast cancer cell lines in culture and to reduce breast tumor growth in animal models. Furthermore, retinoids can augment the action of other breast cancer cell growth inhibitors both in vitro and in vivo. Clinically, interest has increased in the potential use of retinoids for the prevention and treatment of human breast cancer. We have examine the effect of all-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) on human breast cancer cell(MCF-10A, T47-D, MCF-7) proliferation using MTT assay and cell cycle analysis(FACS). Overexpression of cyclin D1 protein is observed in the majority of breast cancers, suggesting that dysregulated expression of cyclin D1 might be a critical event in breast cancer carcinogenesis. We investigated whether tRA and 9-cis RA might affect expression of cyclin D1 on human breast cancer cells(MCF-10A, T47-D, MCF-7) using RT-PCR and west-ern bolt. In MCF-10A cells, either tRA or 9-cis RA treatment did not affect the cell proliferation. In T47-D cells and MCF-7 cells, either tRA or 9-cis RA treatment showed the inhibition of the cell proliferation over control cells and also inhibit the estrogen stimulated cell proliferation when it was given together with estrogen. The effect of retinoids was dose- and time- dependent. T47-D cells treated with 1.0 $\muM$ tRA undergo G0/G1-phase arrest by Day 5. MCF-7 cells treated with 1.0 $\muM$ tRA undergo S-phase arrest by Day 5. All-trans retinoic acid(tRA) and 9-cis retinoic acid(9-cis RA) inhibited the cyelin D1 mRNA and protein expression levels of human MCF-7 and T47-D breast carcinoma cells in vitro. The data indicate that retinoids can reduce cyclin D1 expression levels in a variety of breast cell lines in vitro and result in inhibition of cell proliferation. tRA-mediated growth inhibition and cyclin D1 expression inhibition is more potent than 9-cis RA mediated that. tRA-mediated inhibition effect is more potent on T47-D cells than on MCF-7 cells. Our data suggest that retinoids activity is different according to property of cell lines. Future chemoprevention of breast cancer studies using retinoids will be necessary to determine the mechanism of the retinoids-mediated growth inhibition.

  • PDF

All-trans Retinoic Acid-Associated Low Molecular Weight Water-Soluble Chitosan N anoparticles Based on Ion Complex

  • Kim Dong-Gon;Choi Changyong;Jeong Young-Il;Jang Mi-Kyeong;Nah Jae-Woon;Kang Seong-Koo;Bang Moon-Soo
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.66-72
    • /
    • 2006
  • The purpose of this study is to develop novel nanoparticles based on polyion complex formation between low molecular weight water-soluble chitosan (LMWSC) and all-trans retinoic acid (atRA). LMWSC nanoparticles encapsulating atRA based on polyion complex were prepared by mixing of atRA into LMWSC aqueous solution using ultrasonication. In FTIR spectra, the carbonyl group of atRA at 1690 $cm^{-1}$ disappeared or decreased when ion complexes were formed between LMWSC and atRA. In ${1}^H$ NMR spectra, specific peaks of atRA disappeared when atRA-encapsulated LMWSC (RAC) nanoparticles were reconstituted into $D_{2}O$ while specific peaks both of atRA and LMWSC appeared in $D_{2}O$/DMSO (1/3, v/v) mixture. XRD patterns also showed that the crystal peaks of atRA were disappeared by encapsulation into LMWSC nanoparticles. LMWSC nanoparticles encapsulating atRA have spherical shapes with particle size below 200 nm. The mechanism of encapsulation of atRA into LMWSC nanoparticles was thought to be an ion complex formation between LMWSC and atRA. LMWSC nanoparticles showed high atRA loading efficiency over 90$\%$ (w/w). AtRA was continuously released from nanoparticles over 10 days. In in vitro cell cytotoxicity test, free atRA showed higher cytotoxic effect against CT 26 colon carcinoma cell line on 1 day. However, RAC nanoparticles showed similar cytotoxicity against CT 26 cells on 2 day. These results suggest the potential for the introduction of LMWSC nanoparticles into various biomedical fields such as drug delivery.

Correlation Between Skin Irritation and Cytotoxicity of Anti-wrinkle Agents (화장품 원료의 피부자극성과 세포독성의 관련성)

  • 이은희;이종권;김용규;박기숙;안광수
    • YAKHAK HOEJI
    • /
    • v.45 no.3
    • /
    • pp.310-319
    • /
    • 2001
  • To compare skin irritation and cytotoxicity of anti-wrinkle agents, we examined skin irritation of six anti-wrinkle agents (ascorbic acid, glycolic acid, all trans-retinoic acid, ginseng extract, retinol, EB) in New Zealand white rabbit. Cytotoxicity of these agents was determined by MTT [tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] at multi-time points in cultured HaCaT cell, a human immortalized keratinocyte cell. We then analyzed correlation between skin irritation and cytotoxicity by spearman's rank correlation analysis. All trans-retinoic acid showed the highest primary irritation index (0.92) in skin irritation test. Being all the six agents not irritant, retinal showed the most cytotoxic agents. The correlation between skin irritation and cytotoxicity ($IC_{50}$/ at different time point was 0.814, 0.757, 0.814 and 0.7 at 3, 24, 48 and 72 h, respectively. We also fecund that IC$_{20}$ and IC$_{80}$ of these agents showed similar correlation with skin irritation. These results therefore demonstrated that there is close correlation between skin irritation and cytotoxicity $IC_{50}$/ value by MTT in HaCaT cell at early time points by anti-wrinkle agents or IC$_{20}$ value. $IC_{50}$/ at earily time point or IC$_{20}$ values may be reliable alternative determinant of skin irritation.n.

  • PDF

Effects of retinoic acid isomers on apoptosis and enzymatic antioxidant system in human breast cancer cells

  • Hong, Tae-Kyong;Lee-Kim, Yang-Cha
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.77-83
    • /
    • 2009
  • Retinoic acids (RAs) modulate growth, differentiation, and apoptosis in normal, pre-malignant & malignant cells. In the present study, the effects of RA isomers (all-trans RA, 13-cis RA, and 9-cis RA) on the cell signal transduction of human breast cancer cells have been studied. The relationship between RAs and an enzymatic antioxidant system was also determined. Estrogen-receptor (ER) positive MCF-7 and ER-negative MDA-MB-231 human breast cancer cells were treated with different doses of each RA isomers, all-trans RA, 13-cis RA, or 9-cis RA. Treatment of RA isomers inhibited cell viability and induced apoptosis of MCF-7 cells as a result of increased caspase activity in cytoplasm and cytochrome C released from mitochondria. All-trans RA was the most effective RA isomer in both cell growth inhibition and induction of apoptosis in MCF-7 cells. However, no significant effect of RA isomers was observed on the cell growth or apoptosis in ER-negative MDA-MB-231 cells. In addition, activities of antioxidant enzymes such as catalase and glutathione peroxidase were decreased effectively after treatment of RA in MCF-7 cells, whereas SOD activity was rarely affected. Thus, the present data suggest that all-trans RA is the most potential inducer of apoptosis and modulator of antioxidant enzymes among RA isomers in MCF-7 human breast cancer cells.

All-trans retinoic acid alters the expression of adipogenic genes during the differentiation of bovine intramuscular and subcutaneous adipocytes

  • Chung, Ki Yong;Kim, Jongkyoo;Johnson, Bradley J.
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1397-1410
    • /
    • 2021
  • The present study was designed to determine the influence of all-trans retinoic acid (ATRA) on adipogenesis-related gene regulation in bovine intramuscular (IM) and subcutaneous (SC) adipose cells during differentiation. Bovine IM and SC adipocytes were isolated from three 19-mo-old, crossbred steers. Adipogenic differentiation was induced upon cultured IM and SC preadipocytes with various doses (0, 0.001, 0.01, 0.1, 1 µM) of ATRA. After 96 h of incubation, cells were harvested and used to measure the gene expression of CCAAT/Enhancer binding protein β (C/EBPβ), peroxisome proliferator-activated receptor (PPAR) γ, glucose transporter 4 (GLUT4), stearoyl CoA desaturase (SCD), and Smad transcription factor 3 (Smad3) relative to the quantity of ribosomal protein subunit 9 (RPS 9). Retinoic acid receptor (RAR) antagonist also tested to identify the effect of ATRA on PPARγ -RAR related gene expression in IM cells. The addition of ATRA to bovine IM decreased (p < 0.05) expression of PPARγ. The expression of PPARγ was also tended to be downregulated (p < 0.1) in high levels (10 µM) of ATRA treatment in SC cells. The treatment of RAR antagonist increased the expression of PPARγ in IM cells. Expression of C/EBPβ decreased (p < 0.05) in SC, but no change was observed in IM (p > 0.05). Increasing levels of ATRA may block adipogenic differentiation via transcriptional regulation of PPARγ. The efficacy of ATRA treatment in adipose cells may vary depending on the location.