• Title/Summary/Keyword: All-in-one dentin adhesive

Search Result 86, Processing Time 0.039 seconds

A STUDY ON THE EFFECT OF DENTIN BONDING AGENTS APPLIED OVER ENAMEL ABOUT THE BOND STRENGTH OF COMPOSITE RESIN (접착강화제가 치아경조직과의 접착강도 변화에 미치는 영향에 관한 연구)

  • Choi, Woong-Dae;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 1995
  • The purpose of this study was to investigate the effect of dentin bonding agents on the bond strength of composite resin restorations in case of applying the dentin bonding agents to acid etched enamel surfaces. Freshly extracted 364 bovine anterior teeth were selected as a adherents. 320 enamel specimens were divided into two groups(unetched group (1) and etched group (2) for testing the shear bond strength, 40 specimens were used for the hardness testing, and 4 specimens of rest were to observe the resin-tag formation into etched enamel surfaces. All surfaces of enamel specimens were polished with 320~1500 SiC paper under continuous running water. In Group (1), 100 enamel specimens were polished and unetched. 220 polished enamel specimens in Group (2) were etched with 37 % phosphoric acid solution for 60 seconds, washed with water for 20 seconds, and dried with a light air pressure for 60 seconds. Three kinds of dentin bonding agents(Gluma, Prisma, Scotchbond 2) were evaluated the effect on the bond strength to conditioned enamel surfaces. Shear bond strengths were measured on the three cases such as a coating of primer only, a coating of sealer only, and a sequential coating of primer and sealer to acid etched enamel surfaces were compared with the bond strengths measured by the coating of enamel bonding agent followed by the bonding of composite resin (Photo clearfil bright, Kuraray, Japan) to unetched and acid etched enamel surfaces. In addition, the hardness tested on the adhesive fractured surface between composite resin enamel as a mean of evaluation of a factor whether the mechanical bond strengths were affected and the penetration of dentin bonding agents into etched enamel surfaces was also observed. Bond strengths were measured using the method of shear bond strength by a universal testing machine (Instron-4467, USA), statistical test were applied to the results using a one way analysis variance(ANOVA), and hardness was measured by the Vicker's Hardness Tester(MHT-i, Matsuzawa, Japan) and the penetration of the resins were observed by the SEM (Hitachi, S-2300, Japan). The following conclusions were drawn; 1. Enamel bonding agent showed to affect the improvement of bond strength of composite resin to enamel surface both unetched and etched. 2. Dentin bonding agents could be resulted in increase of bond strength to unetched enamel surface, but there were no statistical significances. 3. Bond strengths to etched enamel surface were significantly decreased with a coating of dentin primer only. 4. Coating of sealer only and coating of primer and sealer noticed the similar bond strengths of composite resin to etched enamel using the enamel bonding agents. 5. The applying method proved to be more effective than the kinds of dentin bonding agents on the bond strength of composite resin to etched enamel than the kind of dentin. 6. Vicker's hardness numbers of dentin bonding agents were lower than that of composite resin, but the degree of penetration of dentin bonding agents into etched enamel surfaces was excellent.

  • PDF

MARGINAL MICROLEAKAGE AND SHEAR BOND STRENGTH OF COMPOSITE RESIN ACCORDING TO TREATMENT METHODS OF ARTIFICIAL SALIVA-CONTAMINATED SURFACE AFTER PRIMING (접착강화제 도포후 인공타액에 오염된 표면의 처리방법에 따른 복합레진의 번연누출과 전단결합강도)

  • Cho, Young-Gon;Ko, Kee-Jong;Lee, Suk-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2000
  • During bonding procedure of composite resin, the prepared cavity can be contaminated by saliva. In this study, marginal microleakage and shear bond strength of a composite resin to primed enamel and dentin treated with artificial saliva(Taliva$^{(R)}$) were evaluated. For the marginal microleakage test, Class V cavities were prepared in the buccal surfaces of fifty molars. The samples were randomly assigned into 5 groups with 10 samples in each group. Control group was applied with a bonding system (Scotchbond$^{TM}$ Multi-Purpose plus) according to manufacture's directions without saliva contamination. Experimental groups were divided into 4 groups and contaminated with artificial saliva for 30 seconds after priming: Experimental 1 group ; artificial saliva was dried with compressed air only, Experimental 2 group ; artificial saliva was rinsed and dried. Experimental 3 group ; cavities were etched with 35% phosphoric acid for 15 seconds after rinsing and drying artificial saliva. Experimental 4 group ; cavities were etched with 35% phosphoric acid for 15 seconds and primer was reapplied after rinsing and drying artificial saliva. All the cavities were applied a bonding agent and filled with a composite resin (Z-100$^{TM}$). Specimens were immersed in 0.5% basic fuschin dye for 24 hours and embedded in transparent acrylic resin and sectioned buccolingually with diamond wheel saw. Four sections were obtained from one specimen. Degree of marginal leakage was scored under stereomicroscope and their scores were averaged from four sections. The data were analyzed by Kruscal-Wallis test and Fisher's LSD. For the shear bond strength test, the buccal or occlusal surfaces of one hundred molar teeth were ground to expose enamel(n=50) or dentin(n=50) using diamond wheel saw and its surface was smoothed with Lapping and Polishing Machine(South Bay Technology Co., U.S.A.). Samples were divided into 5 groups. Treatment of saliva-contaminated enamel and dentin surfaces was same as the marginal microleakage test and composite resin was bonded via a gelatin capsule. All specimens were stored in distilled water for 48 hours. The shear bond strengths were measured by universal testing machine (AGS-1000 4D, Shimaduzu Co., Japan) with a crosshead speed of 5 mm/minute. Failure mode of fracture sites was examined under stereomicroscope. The data were analyzed by ANOVA and Tukey's studentized range test. The results of this study were as follows : 1. Enamel marginal microleakage showed no significant difference among groups. 2. Dentinal marginal microleakages of control, experimental 2 and 4 groups were lower than those of experimental 1 and 3 groups (p<0.05). 3. The shear bond strength to enamel was the highest value in control group (20.03${\pm}$4.47MPa) and the lowest value in experimental 1 group (13.28${\pm}$6.52MPa). There were significant differences between experimental 1 group and other groups (p<0.05). 4. The shear bond strength to dentin was higher in control group (17.87${\pm}$4.02MPa) and experimental 4 group (16.38${\pm}$3.23MPa) than in other groups, its value was low in experimental 1 group (3.95${\pm}$2.51 MPa) and experimental 2 group (6.72${\pm}$2.26MPa)(p<0.05). 5. Failure mode of fractured site on the enamel showed mostly adhesive failures in experimental 1 and 3 groups. 6. Failure mode of fractured site on the dentin did not show adhesive failures in control group, but showed mostly adhesive failure in experimental groups. As a summary of above results, if the primed tooth surface was contaminated with artificial saliva, primer should be reapplied after re-etching it.

  • PDF

The Influence of Water Storage on Mechanical Properties of Adhesive Resin (수중 보관이 접착용 레진의 물리적 성질에 미치는 영향)

  • Kim, Won-Chan;Lee, Kwang-won;Lee, Jeong;Yu, Mi-Kyoung;Kim, Jeong-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.193-202
    • /
    • 2006
  • Objective To evaluate the influence of water storage on the mechanical properties of dental adhesives over 1 and 3 months. Materials and Methods Adhesive resin sheets were prepared by pouring either All-bond 2(AB), Clearfil SE Bond(SE) into a mold measuring $15{\times}15{\times}0.9mm$. After solvent in primer evaporation, the adhesives were light-cured and removed from the mold and divided in two pieces, trimmed to hourglass shape that were used to determine the micro-tensile strength(MTS). Another hourglass shaped metal mold measuring $2.0{\times}1.5mm$ in cross-section area was made to determine the Young's modulus(E). Adhesive specimens for Young's modulus(E) were prepared in the same method. Specimens were stored at $37^{\circ}C$ in distilled water and tested after 1 and 3 months. The data were analyzed by one-way ANOVA and Tukey's test. Results Water storage significantly decreased the micro-tensile strength(MTS) of AB and SE specimens after 1 and 3 months(P<0.05). The Young's modulus(E) were also decreased after water storage for 1 and 3 months, but statistically not significant in each group of AB and SE group respectively. Conclusions Long-term exposure of adhesive resin to water can cause reduction of mechanical properties. It may compromise resin/dentin bonds and affect longevity of restorations.

Influence of 10-MDP concentration on the adhesion and physical properties of self-adhesive resin cements

  • Shibuya, Kazuhiko;Ohara, Naoko;Ono, Serina;Matsuzaki, Kumiko;Yoshiyama, Masahiro
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.4
    • /
    • pp.45.1-45.10
    • /
    • 2019
  • Objectives: Self-adhesive resin cements contain functional monomers that enable them to adhere to the tooth structure without a separate adhesive or etchant. One of the most stable functional monomers used for chemical bonding to calcium in hydroxyapatite is 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP). The aim of this study was to evaluate the influence of the10-MDP concentration on the bond strength and physical properties of self-adhesive resin cements. Materials and Methods: We used experimental resin cements containing 3 different concentrations of 10-MDP: 3.3 wt% (RC1), 6.6 wt% (RC2), or 9.9 wt% (RC3). The micro-tensile bond strength of each resin cement to dentin and a hybrid resin block (Estenia C&B, Kuraray Noritake Dental) was measured, and the fractured surface morphology was analyzed. Further, the flexural strength of the resin cements was measured using the three-point bending test. The water sorption and solubility of the cements following 30 days of immersion in water were measured. Results: The bond strength of RC2 was significantly higher than that of RC1. There was no significant difference between the bond strength of RC2 and that of RC3. The water sorption of RC3 was higher than that of any other cement. There were no significant differences in the three-point bending strength or water solubility among all three types of cements. Conclusions: Within the limitations of this study, it is suggested that 6.6 wt% 10-MDP showed superior properties than 3.3 wt% or 9.9 wt% 10-MDP in self-adhesive resin cement.

THE STUDY ON THE MICROLEAKAGE PATTERN OF FLOWABLE COMPOSITE RESIN RESTORATIONS ACCORDING TO THE TYPE OF ADHESIVE MATERIALS (접착제에 따른 유동성 복합 레진 수복물의 미세누출 양상에 관한 연구)

  • Park, Ji-Eun;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.35 no.3
    • /
    • pp.456-468
    • /
    • 2008
  • This study was performed to evaluate the quality of newly offered dentin bonding system($AdheSE^{(R)}$ One) by comparing the degree of microleakage measured with those of several conventional adhesive materials(AQ Bond Plus and $Adper^{TM}$ Single Bond 2). The quality of hybrid layer and resin tags was analyzed by observing restoration/ tooth interface under SEM. All-in-one system is in the limelight for having advantage of reducing chair time of children with difficult behavior pattern. Therefore the possibility of clinical application of All-in-one system was evaluated. The results obtained are as follows; 1. At the enamel margin, group II(AQ Bond Plus) showed the highest value of microleakage, and the other groups showed decreased value in order of group III($AdheSE^{(R)}$ One) and I($Adper^{TM}$ Single Bond 2). There was statistically significant difference between group II and the others(p<0.05), and no statistical difference was found between group I and III. 2. At the dentin margin, microleakage value was increased in order of group II, I, III and significant difference between all groups(p<0.05). 3. In group I and III, microleakage value measured at the enamel margin was significantly lower than that seen at the dentin margin(p<0.05), and there was no statistical difference in group II. 4. Resin tags observed under SEM were very weak and tangled in group II and III while the strong and thick tags were observed in group I. In conclusion, careful case selection and accurate clinical application is recommended in using AQ Bond Plus and $AdheSE^{(R)}$ One, giving consideration of the results showing its higher microleakage and weaker strength than $Adper^{TM}$ Single Bond 2.

  • PDF

FRACTURE RESISTANCE OF THE THREE TYPES OF UNDERMINED CAVITY FILLED WITH COMPOSITE RESIN (복합 레진으로 수복된 세 가지 첨와형태 와동의 파절 저항성에 관한 연구)

  • Choi, Hoon-Soo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • It was reported that esthetic composite resin restoration reinforces the strength of remaining tooth structure with preserving the natural tooth structure. However, it is unknown how much the strength would be recovered. The purpose of this study was to compare the fracture resistance of three types of undermined cavity filled with composite resin with that of non-cavitated natural tooth. Forty sound upper molars were allocated randomly into four groups of 10 teeth. After flattening occlusal enamel, undermined cavities were prepared in thirty teeth to make three types of specimens with various thickness of occlusal structure (Group $1{\sim}3$). All the cavity have the 5 mm width mesiodistally and 7 mm depth bucco-lingually. Another natural 10 teeth (Group 4) were used as a control group. Teeth in group 1 have remaining occlusal structure about 1 mm thickness, which was composed of mainly enamel and small amount of dentin. In Group 2, remained thickness was about 1.5 mm, including 0.5 mm thickness dentin. In Group 3, thickness was about 2.0 mm, including 1 mm thickness dentin. Every effort was made to keep the remaining dentin thickness about 0.5 mm from the pulp space in cavitated groups. All the thickness was evaluated with radiographic Length Analyzer program. After acid etching with 37% phosphoric acid, one-bottle adhesive (Single $Bond^{TM}$, 3M/ESPE, USA) was applied following the manufacturer's recommendation and cavities were incrementally filled with hybrid composite resin (Filtek $Z-250^{TM}$, 3M/ESPE, USA). Teeth were stored in distilled water for one day at room temperature, after then, they were finished and polished with Sof-Lex system. All specimens were embedded in acrylic resin and static load was applied to the specimens with a 3 mm diameter stainless steel rod in an Universal testing machine and cross-head speed was 1 mm/min. Maximum load in case of fracture was recorded for each specimen. The data were statistically analyzed using one-way analysis of variance (ANOVA) and a Tukey test at the 95% confidence level. The results were as follows: 1. Fracture resistance of the undermined cavity filled with composite resin was about 75% of the natural tooth. 2. No significant difference in fracture loads of composite resin restoration was found among the three types of cavitated groups. Within the limits of this study, it can be concluded the fracture resistance of the undermined cavity filled with composite resin was lower than that of natural teeth, however remaining tooth structure may be supported and saved by the reinforcement with adhesive restoration, even if that portion consists of mainly enamel and a little dentin structure.

FRACTURE RESISTANCE OF THE THREE TYPES OF UNDERMINED CAVITY FILLED WITH COMPOSITE RESIN (복합 레진으로 수복된 세 가지 첨와형태 와동의 파절 저항성에 관한 연구)

  • Choi, Hoon-Soo;Shin, Dong-Hoon
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.177-183
    • /
    • 2008
  • It was reported that esthetic composite resin restoration reinforces the strength of remaining tooth structure with preserving the natural tooth structure. However, it is unknown how much the strength would be recovered. The purpose of this study was to compare the fracture resistance of three types of undermined cavity filled with composite resin with that of non-cavitated natural tooth. Forty sound upper molars were allocated randomly into four groups of 10 teeth. After flattening occlusal enamel. undermined cavities were prepared in thirty teeth to make three types of specimens with various thickness of occlusal structure (Group $1{\sim}3$). All the cavity have the 5 mm width mesio-distally and 7 mm depth bucco-lingually. Another natural 10 teeth (Group 4) were used as a control group. Teeth in group 1 have remaining occlusal structure about 1 mm thickness, which was composed of mainly enamel and small amount of dentin. In Group 2, remained thickness was about 1.5 mm, including 0.5 mm thickness dentin. In Group 3, thickness was about 2.0 mm, including 1 mm thickness dentin. Every effort was made to keep the remaining dentin thickness about 0.5 mm from the pulp space in cavitated groups. All the thickness was evaluated with radiographic Length Analyzer program. After acid etching with 37% phosphoric acid, one-bottle adhesive (Single $Bond^{TM}$, 3M/ESPE, USA) was applied following the manufacturer's recommendation and cavities were incrementally filled with hybrid composite resin (Filtek $Z-250^{TM}$, 3M/ESPE, USA). Teeth were stored in distilled water for one day at room temperature, after then, they were finished and polished with Sof-Lex system. All specimens were embedded in acrylic resin and static load was applied to the specimens with a 3 mm diameter stainless steel rod in an Universal testing machine and cross-head speed was 1 mm/min. Maximum load in case of fracture was recorded for each specimen. The data were statistically analyzed using one-way analysis of variance (ANOVA) and a Tukey test at the 95% confidence level. The results were as follows: 1. Fracture resistance of the undermined cavity filled with composite resin was about 75% of the natural tooth. 2. No significant difference on fracture loads of composite resin restoration was found among the three types of cavitated groups. Within the limits of this study, it can be concluded the fracture resistance of the undermined cavity filled with composite resin was lower than that of natural teeth, however remaining tooth structure may be supported and saved by the reinforcement with adhesive restoration, even of that portion consists of mainly enamel and a little dentin structure.

  • PDF

COMPARATIVE STUDY ON THE SHEAR BOND STRENGTH OF ALL-IN-ONE DENTIN BONDING SYSTEM APPLIED TO PRIMARY TEETH (유치에 적용된 All-in-One 상아질 접착 시스템의 전단강도에 관한 비교연구)

  • Kim, Dong-Cheol;Kim, Jong-Soo;Yoo, Seung-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.4
    • /
    • pp.560-568
    • /
    • 2007
  • This study was performed to compare the shear bond strength of primary enamel & dentin treated by AQ Bond $Plus^{TM}$ and G $Bond^{TM}$, recently developed 6th generation dentin bonding system, to that of Single $Bond^{TM}$ being widely used. Also by observing the resin tag under scanning electron microscope, Resin tags of each material were also observed under scanning electron microscope and compared to one another. The possibility of clinical application of All-in-One system which has an advantage to reduce chair-time for children with difficult behavior pattern was evaluated. The results obtained are as follows: 1. No statistically significant difference between groups was found in shear bond strength of primary enamel. 2. In primary dentin, the shear bond strength of AQ Bond $Plus^{TM}$ was $1.15\;{\pm}\;0.37\;MPa$, G $Bond^{TM}$ was $1.69\;{\pm}\;0.74\;MPa$ and Single $Bond^{TM}$ was $0.56\;{\pm}\;0.11\;MPa$. There were no statistical difference between AQ Bond $Plus^{TM}$ and G $Bond^{TM}$ and between G $Bond^{TM}$ and Single $Bond^{TM}$, whereas statistically significant difference was found between AQ Bond $Plus^{TM}$ and Single $Bond^{TM}$. 3. Under scanning electron microscope, resin tags observed in AQ Bond $Plus^{TM}$ and G $Bond^{TM}$ were very weak and tangled while strong and thick tags were shown with many lateral branches in Single $Bond^{TM}$. The result of the present study coupled with the advantages of less working time over the previous generation suggests that All-in-One system might be effectively used in adhesive dental procedures for primary teeth.

  • PDF

The effect of cavity wall property on the shear bond strength test using iris method (Iris 법을 이용한 전단접착강도 측정에서 와동벽의 영향)

  • Kim, Dong-Hwan;Bae, Ji-Hyun;Cho, Byeong-Hoon;Lee, In-Bog;Baek, Seung-Ho;Ryu, Hyun-Mi;Son, Ho-Hyun;Um, Chung-Moon;Kwon, Hyuck-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.2
    • /
    • pp.170-176
    • /
    • 2004
  • Objectives : In the unique metal iris method. the developing interfacial gap at the cavity floor resulting from the cavity wall property during polymerizing composite resin might affect the nominal shear bond strength values. The aim of this study is to evaluate that the iris method reduces the cohesive failure in the substrates and the cavity wall property effects on the shear bond strength tests using iris method. Materials and Methods : The occlusal dentin of 64 extracted human molars were randomly divided into 4 groups to simulate two different levels of cavity wall property (metal and dentin iris) and two different materials ($ONE-STEP^{\circledR}$ and $ALL-BOND^{\circledR}$ 2) for each wall property. After positioning the iris on the dentin surface. composite resin was packed and light-cured. After 24 hours the shear bond strength was measured at a crosshead speed of 0.5 mm/min. Fracture analysis was performed using a microscope and SEM. The data was analyzed statistically by a two-way ANOV A and t-test. Results : The shear bond strength with metal iris was significant higher than those with dentin iris (p=0.034). Using $ONE-STEP^{\circledR}$, the shear bond strength with metal iris was significant higher than those with dentin iris (p=0.005), but not in $ALL-BOND^{\circledR}$ 2 (p=0.774). The incidence of cohesive failure was very lower than other shear bond strength tests that did not use iris method. Conclusions:The iris method may significantly reduce the cohesive failures in the substrates. According to the bonding agent systems. the shear bond strength was affected by the cavity wall property.

THE BONDING DURABILITY OF RESIN CEMENTS (레진시멘트의 접착 내구성에 관한 연구)

  • Cho, Min-Woo;Park, Sang-Hyuk;Kim, Jong-Ryul;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.4
    • /
    • pp.343-355
    • /
    • 2007
  • The objectives of this study was to evaluate the durability of 4 resin cements by means of microtensile bond strength test combined with thermocycling method and fractographic FE-SEM analysis. Experimental groups were prepared according to thermocycling (0, 1,000, 5,000) and the kind of resin cements, those were Variolink II, Multilink, Panavia F 2.0, Rely X Unicem. Flat dentin surfaces were created on mid-coronal dentin of extracted third molars. Then fresh dentin surface was grounded with 320-grit silicon carbide abrasive papers to create uniform smear layers. Indirect composite block (Tescera, Bisco Inc., Schaumburg, IL, USA) was fabricated ($12\;{\times}\;12\;{\times}\;6\;mm^3$). It's surface for bonding to tooth was grounded with silicon carbide abrasive papers from 180- to 600-grit serially, then sandblasted witk $20\;-\;50\;{\mu}m$ alumina oxide. According to each manufacturer's instruction, dentin surface was treated and indirect composite block was luted on it using each resin cement. For Rely X Unicem, dentin surface was not treated. The bonded tooth-resin block were stored in distilled water at $37^{\circ}C$ for 24 hours. After thermocycling, the bonded tooth-resin block was sectioned occluso-gingivally to 1.0 mm thick serial slabs using all Isomet slow-speed saw (Isomet, Buehler Ltd, Lake Bluff, IL, USA). These sectioned slabs were further sectioned to $1.0\;{\times}\;1.0\;mm^2$ composite-dentin beams. The specimens were tested with universal testing machine (EZ-Test, Shimadzu, Japan) at a crosshead speed of 1.0 mm/min with maximum load of 500 N. The data was analyzed using one-way ANOVA and Duncan's multiple comparison test at $p\;{\leq}\;0.05$ level. Within the limited results, we conclude as follows; 1. The bond strength of Variolink II was evaluated the highest among experimental groups and was significantly decreased after 1,000 thermocycling (p < 0.05). 2. The bond strength of Multilink was more affected by thermocycling than the other experimental groups and significantly decreased after 1,000 thermocycling (p < 0.05). 3. Panavia F 2.0 and Rely X Unicem showed the gradually decreased tendency of microtensile bond strength according to thermocycling but there was no significant difference (p > 0.05). 4. Adhesive based-resin cements showed lower bond strength with or without thermocycling than composite based-resin cements. 5. Variolink II & Multilink showed high bond strength and mixed failure, which was occurred with a thin layer of luting resin cement before thermocycling and gradually increased adhesive failure along the dentin surface after thermocycling. The bonding performance of resin cement can be affected by application procedure and chemical composition. Composite based-resin cement showed higher bond strength and durability than adhesive based-resin cement.