• Title/Summary/Keyword: All-Wheel Steering

Search Result 55, Processing Time 0.029 seconds

Design of Multi-Axle Steering Algorithm for a All Terrain Mobile Crane (전지형 크레인의 다축조향 알고리즘 설계)

  • Song, Jinseop;Noh, HongJun;Lee, Hanmin;Kim, Chan-Ho;Park, Hyo-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.227-235
    • /
    • 2017
  • In this paper, a systematic 5-mode(road steering, all-wheel steering, crab steering, reduced swing out mode and independent steering) steering algorithm design process for an all-terrain mobile crane with 5 axles and all steerable wheels is proposed. Steering angles for each steering mode are designed based not only on basic theory but also on vehicle specification, design limitation and requirements. A multi-body dynamic analysis is carried out to investigate the feasibility of the steering algorithm. According to the results, the proposed steering algorithm meets the objective of each steering mode.

Development and Verification of the Steering Algorithm for Articulated Vehicles (굴절차량에 대한 조향알고리즘 개발 및 검증)

  • Moon, Kyeong-Ho;Lee, Soo-Ho;Mok, Jai-Kyun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • AWS (all wheel steering) is applied to improve the stability and the turning performance. Most automotive cars are mainly controlled by FWS (front wheel steering) system except some cars which are made to improve their stability by using AWS. Articulated vehicles with a pivoting joint for easy turn are difficult to make a sharp turn because of the long body and long wheelbase. Therefore applying AWS to the articulated vehicles is effective to reduce the turning radius. The AWS control method for the articulated vehicles is currently applied to only Phileas vehicles which were developed by APTS. The paper on the design of a controller to guide an articulated vehicle along the path was published but control algorithm for manual driving has not been reported. In the present paper, steering, characteristics of the Phileas vehicles have been analyzed and then new algorithm has been proposed. To verify the AWS algorithm, Commercial S/W, ADAMS was used for validity of the dynamic model and algorithm.

Development of the Virtual Driving Environment for the AWS ECU Test Platform of the Bi-modal Tram (저상굴절 궤도차량의 AWS ECU 테스트 플랫폼을 위한 가상 주행환경 개발)

  • Choi, Seong-Hoon;Park, Tea-Won;Lee, Soo-Ho;Moon, Kyung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.283-290
    • /
    • 2007
  • A bi-modal tram has been developed to offer an advanced transportation service compared with existing vehicles. The All-Wheel-Steering system is applied to the bi-modal tram to satisfy the required steering performance because the bi-modal tram has extended length and articulated mechanism. An ECU for the steering system is essential to steer wheels on 2nd and 3rd axles by the specific AWS algorithm with the prescribed driving condition. The Hardware-In-the-Loop Simulation(HILS) system is planned for the purpose of evaluating the steering system of the bi-modal tram. There are kinematic links with the hydraulic actuator to steer wheels on each 2nd and 3rd axles and also same steering mechanism as the actual vehicle is in the HILS system. Controlling the movement of hydraulic actuator which reflects the lateral steering reaction force on each wheel is the key to realize the HILS system, but the reaction force is continuously changed according to various driving conditions. Therefore, the simulation through the multi-body dynamics model is used to obtain the required forces.

  • PDF

Turning characteristics of articulated vehicles related to geometric design (기하학적 디자인과 관련한 굴절차량의 선회 특성 검토)

  • Moon, Kyeong-Ho;Mok, Jai-Kyun;Chang, Se-Ky;Kim, Yeon-Su;Lee, Soo-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.698-704
    • /
    • 2007
  • Articulated vehicles which have a pivoting joint allowing the vehicle to rotate more easily are difficult to turn the curves because of their long length. In order to review operational safety, turning characteristics related to geometric design should be investigated when articulated vehicles run on the road which can be interfered with other vehicles. The vehicles to review the turning characteristics are the normal articulated bus in Seoul with FWS(front wheel steering) and new bimodal tram with AWS(all wheel steering). Steering characteristics and geometric design were investigated such as turning radius, offtracking, swept path width and swingout. The results were reviewed with respect to the standards of vehicle safety and road design.

  • PDF

Optimum Design for Reducing Steering Error of Rack-and-Pinion Steering Linkage (랙-피니언 조향기구의 조향오차 최적설계)

  • 홍경진;최동훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.43-53
    • /
    • 1998
  • This paper addresses an optimization for reducing a steering error of a rack-and-pinion steering linkage with a MacPherson strut independent front suspension system. The length, orientations and inner joint positions of a tie-rod are selected as design variables and Ackerman geonetry, understeer effect, minimum turn radius, wheel alignment and packaging are considered as design constraints. Nonlinear kinematic analysis of the steering system is performed for calculating the values of cost and constraints, and Augmented Lagrange Multiplier(ALM) method is used for solving the constrained optinization problem. The optimization results show that the steering error are considerably reduced while satisfying all the constraints.

  • PDF

A Study on Developing Reverse Parking Assistant Algorithm for Hi-modal Tram (바이모달 트램의 후진주차보조 알고리즘 개발에 관한 연구)

  • Choi, Seong-Hoon;Park, Tae-Won;Lee, Soo-Ho;Moon, Kyeong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.84-90
    • /
    • 2009
  • The bi-modal tram is under development as a new public transportation. The features of the tram are an extended wheel base and its length. This features result in difficulties for drivers on maneuvering the tram. Therefore, the all wheel steering system is applied to the articulated vehicle. The AWS system enables the vehicle to steer all the rear wheels independently and improves its driving characteristics. However, the bi-modal tram has a problem to move backward in the limited place because of its geometric feature and the AWS system. Hence, the reverse parking assistant algorithm for articulated vehicle is developed to solve the problems of the reverse parking. Using the vehicle model which includes the reverse parking assistant algorithm, the dynamic analysis is performed for several parking cases. By the result of the analysis, the stability and validity of the reverse parking assistant algorithm is verified.

Co-Simulation Technology Development with Electric Power Steering System and Full Vehicle (전동 조향 장치와 차량의 동시 시뮬레이션 기술 개발)

  • 장봉춘;소상균
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.94-100
    • /
    • 2004
  • Most power steering systems obtain the power by a hydraulic mechanism. Therefore, it consumes more energy because the oil power should be sustained all the times. Recently, to solve this problem the electric power system has been developed and become widely equipped in passenger vehicles. In this research the simulation integration technique for an electric power steering system with MATLAB/SIMULINK and a full vehicle model with ADAMS has been developed. A full vehicle model interacted with electronic control unit algorithm is concurrently simulated with an impulsive steering wheel torque input. The dynamic responses of vehicle chassis and steering system are evaluated. This integrated method allows engineers to reduce the prototype testing cost and to shorten the developing period.

A Study on a 4WS Vehicle Using Fuzzy Logic and Model Following Control (퍼지로직과 모델추종제어를 이용한 4륜 조향 차량에 관한 연구)

  • Baek, Seung-Ju;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.931-942
    • /
    • 1999
  • This paper develops a 3 DOF vehicle model which includes lateral, roll and yaw motion to study a 4WS vehicle. The model is used for the simulation of a 4WS vehicle behavior, and to derive a control algorithm for rear wheel steering. This paper uses a feedforward plus feedback control scheme to compute a rear wheel steering angle. The feedforward control scheme for computing the first rear wheel steering angle uses a gain which is acquired by multiplying a proper value on a gain to maintain a zero sideslip angle. The feedback control scheme for computing the second rear wheel steering angle uses fuzzy logic and model following control scheme. A linear 2 DOF model is used as a reference model for model following control, and is derived from the developed 3 DOF model by neglecting sprung mass roll motion. A reference state variable is yaw rate, and is computed using the linear 2 DOF model. J-turn and lane change maneuver simulation are performed to show the effectiveness of the developed control scheme. The simulation results show that the 4WS vehicle with the developed control scheme has much better performance in yaw rate, lateral acceleration, roll angle, and sideslip angle than the 2WS vehicle. Also, the results show that the performance of the developed control is close to the one of an optimal control which assumes all states are perfect.