• 제목/요약/키워드: Alkanes

검색결과 178건 처리시간 0.022초

유기용매염색(II) -Alkane류를 염색매체로 한 C. I. Disperse Violet 1에 의한 PET 염색- (Organic Solvent Dyeing(II) -The Dyeing of PET by C. I. Disperse Violet 1 in Alkanes as Dyeing Media-)

  • 김태경;허재원;김병인;임용진
    • 한국염색가공학회지
    • /
    • 제10권1호
    • /
    • pp.25-32
    • /
    • 1998
  • In the prior study, we found that the dye uptakes of C. I. Disperse Violet 1 on PET in hexane and cyclohexane were higher than those in the other solvents. Therefore, in this study, the dye uptakes and the partition coefficients in alkanes having different number of carbon atoms were obtained and their relationship to the solubilities of the dye in alkanes was also investigated. As the number of carbon atoms of alkanes increases, solubility of the dye increases but the dye uptake decreases. This is due to the fact that the hydrophobicity of alkanes become relatively strong as increasing the number of carbon atoms. It was also found that the dye uptakes in iso-alkanes were larger than those in normal alkanes. This is because that the branched alkanes(iso-alkanes), judging from the tendency of lowering solubility and increasing dye uptake as decreasing the number of carbon atoms of alkanes, behave like the alkanes with less number of carbon atoms rather than the alkanes with the same number of carbon atoms. The logarithmic plot of the dye uptakes vs. the solubilities of the dye showed that the dye uptakes are linearly and inversely proportional to the solubilities. This is in good accordance with the results of the prior study. The heat of dyeing was also calculated from the equilibrium adsorptions at various temperatures. It seemed that the dyeings of PET by C. I. Disperse Violet 1 in nonane, decane, iso-pentane and iso-octane were rather endothermic processes. Dyeing rates in alkanes were somewhat delayed unlike general appearances in solvent dyeing.

  • PDF

Diffusion of Probe Molecule in Small Liquid n-Alkanes: A Molecular Dynamics Simulation Study

  • Yoo, Choong-Do;Kim, Soon-Chul;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권8호
    • /
    • pp.1554-1560
    • /
    • 2008
  • The probe diffusion and friction constants of methyl yellow (MY) in liquid n-alkanes of increasing chain length were calculated by equilibrium molecular dynamics (MD) simulations at temperatures of 318, 418, 518 and 618 K. Lennard-Jones particles with masses of 225 and 114 g/mol are modeled for MY. We observed that the diffusion constant of the probe molecule follows a power law dependence on the molecular weight of nalkanes, DMY${\sim}M^{-\gamma}$ well. As the molecular weight of n-alkanes increases, the exponent $\gamma$ shows sharp transitions near n-dotriacontane ($C_{32}$) for the large probe molecule (MY2) at low temperatures of 318 and 418 K. For the small probe molecule (MY1) $D_{MY1}$ in $C_{12}$ to C80 at all the temperatures are always larger than Dself of n-alkanes and longer chain n-alkanes offer a reduced friction relative to the shorter chain n-alkanes, but this reduction in the microscopic friction for MY1 is not large enough to cause a transition in the power law exponent in the log-log plot of DMY1 vs M of n-alkane. For the large probe molecule (MY2) at high temperatures, the situation is very similar to that for MY1. At low temperatures and at low molecular weights of n-alkanes, $D_{MY2}$ are smaller than $D_{self}$ of n-alkanes due to the relatively large molecular size of MY2, and MY2 experiences the full shear viscosity of the medium. As the molecular weight of n-alkane increases, $D_{self}$ of n-alkanes decreases much faster than $D_{MY2}$ and at the higher molecular weights of n-alkane, MY2 diffuses faster than the solvent fluctuations. Therefore there is a large reduction of friction in longer chains compared to the shorter chains, which enhances the diffusion of MY2. The calculated friction constants of MY1 and MY2 in liquid n-alkanes supported these observations. We deem that this is the origin of the so-called“solventoligomer”transition.

A Study of the Gas Liquid Partition Coefficients of Eleven Normal, Branched and Cyclic Alkanes in Sixty Nine Common Organic Liquids: The Effect of Solute Structure

  • Cheong, Won-Jo
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권3호
    • /
    • pp.459-468
    • /
    • 2002
  • Literature data measured by the author have been processed to report on the effect of solute structure on gas liquid partition coefficients of eleven normal, branched and cyclic alkanes ranging in carbon number from five to nine in sixty nine low molecular weight liquids. The alkane solutes are n-pentane(p), n-hexane(hx), n-heptane(hp), n-octane(o), n-nonane(n), 2-methylpentane(mp), 2,5-dimethylpentane(dp), 2,5-dimethylhexane(dh), 2,3,4-trimethylpentane(tp), cyclohexane(ch), and ethylcyclohexane(ec). The solvent set encompasses most of those studied by Rohrschneider as well as three homologous series of solvents (n-alkanes, 1-alcohols and 1-nitriles) and several perfluorinated alkanes and highly fluorinated alcohols. An excellent linear relationship was observed between lnK and the carbon number of n-alkanes. The effective carbon numbers of branched and cyclic alkanes were determined in a similar fashion to the method of Kovats index. We found that the logarithm of solute vapor pressure multiplied by solute molar volume was a perfect descriptor for the linear relationship with the median effective carbon number.

Deadenylation of Adenine Based-Nucleosides and Calf thymus DNA Induced by Halogenated Alkanes at the Physiological Condition

  • Sherchan, Jyoti;Yun, Min-Ho;Lee, Eung-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권10호
    • /
    • pp.2318-2328
    • /
    • 2009
  • Massive deadenylation of adenine based-nucleosides induced by halogenated alkanes at the physiological condition have been observed. For the study of deadenylation effects by the different substituents and/or functionality in halogenated alkanes, diverse kinds of halogenated alkanes were incubated with adenine based-nucleosides (ddA, dA and adenosine) for 48 h at the physiological condition (pH 7.4, $37\;{^{\circ}C}$), which were analyzed by HPLC and further confirmed by LC-MS. Among the sixteen different halogenated alkanes, we observed massive deadenylation of nucleosides by 2-bromo-2-methylpropane, 2,3-dibromopropene, 2-bromopropane, bromoethane and 2-iodopropane. The order of deadenylation rate was highest in 2-bromo-2-methylpropane followed by 2,3-dibromopropene, 2-bromopropane, bromoethane and 2-iodopropane. In addition, time and dose response relationship of deadenylation in adenine based-nucleosides induced by 2-bromo-2-methylpropane, 2,3-dibromopropene, 2-bromopropane, bromoethane and 2-iodopropane at the physiological condition were investigated. In addition, deadenylation of calf thymus DNA induced by halogenated alkanes was also investigated. These results suggest that the toxic effect of certain halogenated alkanes might be from the depurination of nucleosides.

Deguanylation of Guanine Based-Nucleosides and Calf Thymus DNA Induced by Halogenated Alkanes at the Physiological Condition

  • Sherchan, Jyoti;Lee, Eung-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권12호
    • /
    • pp.2949-2958
    • /
    • 2009
  • Massive deguanylation of guanine based-nucleosides induced by halogenated alkanes at the physiological condition have been observed. For the study of deguanylation effects by the different substituents and/or functionality in halogenated alkanes, diverse kinds of halogenated alkanes were incubated with guanine based-nucleosides (ddG, dG and guanosine) for 48 h at the physiological condition (pH 7.4, 37$^{\circ}C$), which were analyzed by HPLC and further confirmed by LC-MS. Among the sixteen different halogenated alkanes, we observed massive deguanylation of nucleosides by 2-bromo-2-methylpropane, 2,3-dibromopropene, 2-bromopropane, bromoethane and 2-iodopropane. The order of deguanylation rate was highest in 2-bromo-2-methylpropane followed by 2,3-dibromopropene, 2-bromopropane, bromoethane and 2-iodopropane. In addition, time and dose response relationship of deguanylation in guanine basednucleosides induced by 2-bromo-2-methylpropane, 2,3-dibromopropene, 2-bromopropane, bromoethane and 2-iodopropane at the physiological condition were investigated. Deguanylation of calf thymus DNA induced by halogenated alkanes was also investigated. These results suggest that the toxic effect of certain halogenated alkanes might be from the depurination of nucleosides.

유기용매염색(IV) - 알칸류를 염색매체로 한 폴리에스테르 섬유의 염색에 있어서 물의 영향 - (Organic Solvent Dyeing (IV) - The Effect of Water on Dyeing of Polyester Fiber in Alkanes -)

  • 김태경;임용진;조광호;조규민;박태수
    • 한국염색가공학회지
    • /
    • 제12권5호
    • /
    • pp.308-314
    • /
    • 2000
  • The dyeability of C. I. Disperse Violet 1 on polyester fiber in alkance including a small amount of water was investigated. Up to 1% of water in alkanes the dye uptakes were increased rapidly. The dyeing transition temperature of the polyester fiber in alkanes with 1% of water was $86.5^\circ{C}$ that is lower by $11^\circ{C}$ than $97.5^\circ{C}$ in alkanes only. This means that water plasticizes the polyester fiber, and that dyes begin to penetrate the polyester fiber at lower temperature. Addition of trichloromethane which is known as a strong plasticizer on polyester fiber, in alkanes, increased the dye uptakes of C. I. Disperse Violet 1 on polyester fiber at $100^\circ{C}$, but the dyeing transition temperature was lower by $3^\circ{C}$ than in alkanes only.

  • PDF

Molecular Dynamics Simulation of Liquid Alkanes III. Thermodynamic, Structural, and Dynamic Properties of Branched-Chain Alkanes

  • 이송희;이홍;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권5호
    • /
    • pp.501-509
    • /
    • 1997
  • In recent papers[Bull. Kor. Chem. Soc. 1996, 17, 735; ibid 1997, 18, 478] we reported results of molecular dynamics (MD) simulations for the thermodynamic, structural, and dynamic properties of liquid normal alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the corresponding properties of liquid branched-chain alkanes using the same models. The thermodynamic property reflects that the intermolecular interactions become weaker as the shape of the molecule tends to approach that of a sphere and the surface area decreases with branching. Not like observed in the straight-chain alkanes, the structural properties of model Ⅲ from the site-site radial distribution function, the distribution functions of the average end-to-end distance and the root-mean-squared radii of gyration are not much different from those of models Ⅰ and Ⅱ. The branching effect on the self diffusion of liquid alkanes is well predicted from our MD simulation results but not on the viscosity and thermal conductivity.

Predicting Feed Intake of Fallow Deer (Dama Dama) Using Alkanes as a Marker

  • Ru, Y.J.;Miao, Z.H.;Glatz, P.C.;Choct, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권2호
    • /
    • pp.209-212
    • /
    • 2002
  • The understanding of seasonal forage intake of grazing deer is essential for the development of supplementary feeding strategies in southern Australia. The alkane technique is used in other animal species for estimating feed intake of individual animals and their diet composition. To assess the potential of using alkanes as a marker for predicting feed intake of fallow deer, the daily faecal recovery of alkanes and excretion rate of dosed artificial alkanes (C32 and C36) were measured with 6 deer fed three forage based diets. The artificial alkane capsule designed for use in sheep is suitable for fallow deer. Faecal samples need to be collected over days 7-19 after dosing. The daily excretion rate was 40 mg for C32 and 37 mg for C36. The faecal recovery of natural alkanes is incomplete and the faecal concentrations of alkanes need to be adjusted for an accurate estimation of intake. The actual feed intake of 6 experimental deer over a 5 day period was accurately estimated ($R^2$=0.52) using alkanes.

Molecular Dynamics Simulation of Liquid Alkanes. Ⅱ. Dynamic Properties of Normal Alkanes : n- Butane to n- Heptadecane

  • 이송희;이홍;박형숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권5호
    • /
    • pp.478-484
    • /
    • 1997
  • In a recent paper[Bull. Kor. Chem. Soc. 17, 735 (1996)] we reported results of molecular dynamic (MD) simulations for the thermodynamic and structural properties of liquid n-alkanes, from n-butane to n-heptadecane, using three different models. Two of the three classes of models are collapsed atomic models while the third class is an atomistically detailed model. In the present paper we present results of MD simulations for the dynamic properties of liquid n-alkanes using the same models. The agreement of two self-diffusion coefficients of liquid n-alkanes calculated from the mean square displacements (MSD) via the Einstein equation and the velocity auto-correlation (VAC) functions via the Green-Kubo relation is excellent. The viscosities of n-butane to n-nonane calculated from the stress auto-correlation (SAC) functions and the thermal conductivities of n-pentane to n-decane calculated from the heat-flux auto-correlation (HFAC) functions via the Green-Kubo relations are smaller than the experimental values by approximately a factor of 2 and 4, respectively.