• Title/Summary/Keyword: Alkaliphilic microalgae

Search Result 2, Processing Time 0.014 seconds

Omega-7 producing alkaliphilic diatom Fistulifera sp. (Bacillariophyceae) from Lake Okeechobee, Florida

  • Berthold, David Erwin;Rosa, Nina de la;Engene, Niclas;Jayachandran, Krish;Gantar, Miroslav;Laughinghouse, Haywood Dail IV;Shetty, Kateel G.
    • ALGAE
    • /
    • v.35 no.1
    • /
    • pp.91-106
    • /
    • 2020
  • Incorporating renewable fuel into practice, especially from algae, is a promising approach in reducing fossil fuel dependency. Algae are an exceptional feedstock since they produce abundant biomass and oils in short timeframes. Algae also produce high-valued lipid products suitable for human nutrition and supplement. Achieving goals of producing algae fuels and high-valued lipids at competitive prices involves further improvement of technology, especially better control over cultivation. Manipulating microalgae cultivation conditions to prevent contamination is essential in addition to promoting optimal growth and lipid yields. Contamination of algal cultures is a major impediment to algae cultivation that can however be mitigated by choosing extremophile microalgae. This work describes the isolation of alkali-tolerant / alkaliphilic microalgae native to South Florida with ideal characteristics for cultivation. For that purpose, water samples from Lake Okeechobee were inoculated into Zarrouk's medium (pH 9-12) and incubated for 35 days. Selection resulted in isolation of three strains that were screened for biomass and lipid accumulation. Two alkali-tolerant algae Chloroidium sp. 154-1 and Chlorella sp. 154-2 were poor lipid accumulators. One of the isolates, the diatom Fistulifera sp. 154-3, was identified as a lipid accumulating, alkaliphilic organism capable of producing 0.233 g L-1 d-1 dry biomass and a lipid content of 20-30% dry weight. Lipid analysis indicated the most abundant fatty acid within Fistulifera sp. was palmitoleic acid (52%), or omega-7, followed by palmitic acid (17%), and then eicosapentanoic acid (15%). 18S rRNA phylogenetic analysis formed a well-supported clade with Fistulifera species.

Species Specificity Evaluation for Wastewater Treatment Application of Alkaliphilic Microalgae Arthrospira platensis (호염기성 미세조류 Arthrospira platensis의 폐수처리 적용을 위한 종특이성 평가)

  • Su-Hyeon, Lee;Jae-Hee, Huh;Sun-Jin, Hwang
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.6
    • /
    • pp.282-291
    • /
    • 2022
  • Since the efficiency of wastewater treatment using microalgae differs depending on the metabolic characteristics of the species, it is important to understand the characteristics of target algae prior to the application in wastewater treatment. In this study, for the application of Arthrospira platensis to wastewater treatment, which is a filamentous alkaliphilic cyanobacteria, basic species specificity was identified and the possibility of application to wastewater treatment was investigated. As a result of the species specificity investigation, the specific growth rate between pH 7.0 and 11.0 showed the highest value near pH 9 at 0.25/day. The reason for the relatively low growth(0.08/day) at pH 11 was thought to be the CA(carbonic anhydrase) enzyme that is involved in carbon fixation during photosynthesis has the highest activity at pH 8.0 to 9.0, and at pH 11, CA activity was relatively low. In addition, A. platensis showed optimal growth at 400 PPFD(photosynthetic photon flux density) and 30℃, and this means that cyanobacteria such as A. platensis have a larger number of PS-I(photosystem I) than that of PS-II(photosystem II). It was speculated that it was because higher light intensity and temperature were required to sufficiently generate electrons to transfer to PS-I. Regarding the applicability of A. platensis, it was suggested that if a system using the synergistic effect of co-culture of A. platensis and bacteria was developed, a more efficient system would be possible. And different from single cocci, filamentous A. platensis expected to have a positive impact on harvesting, which is very important in the latter part of the wastewater treatment process.