• Title/Summary/Keyword: Alkaline magma

Search Result 90, Processing Time 0.024 seconds

Petrological Study of the Dioritic and Granitic Rocks from Geochang Area (거창 일대에 분포하는 섬록암류와 화강암류에 대한 암석학적 연구)

  • Han, Mi;Kim, Sun-Woong;Yang, Kyoung-Hee;Kim, Jin-Seop
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.167-180
    • /
    • 2010
  • The geochemical studies on the plutonic rocks of the Geochang, the central part of the Ryongnam massif, were carried out in order to constrain the petrogenesis and the paleotectonic environment. The objects of this study are dioritic rocks, biotite granite and hornblende granite. The modal compositions indicate that the dioritic rocks are quartz diorite, quartz monzodiorite, tonalite, biotite granites are granodiorite, granite and hornblende granites are granite, quartz monzonite, quartz syenite. These rocks belong to the calc-alkaline series. Especially, trace elements such as Sr, Nb, Sr, Ti are depleted, suggesting that these rocks are produced in the subduction zone related to calc-alkaline series. Also, the studied granitic rocks correspond to peraluminous and I-type. Chondrite-normalized REE patterns show that LREE are enriched much more than HREE, and have weak Eu(-) anomaly. It is similar to pattern of Jurassic granitoids in the South Korea. Total REE value of the biotite granite and hornblende granite ranges 76.21~137.05 ppm and 73.84~483.21 ppm, respectively, also $(La/Lu)_{CN}$ value ranges 9.61~36.47 and 7.17~21.85. It is suggest that studied rocks suppor their emplacement at active continental margin. Also, these rocks are derived from magma generated by partial melting of lower continental crust materials.

Petrochemical Study on the Cretaceous Volcanic Rocks in Kageo island, Korea (가거도(소흑산도)의 백악기 화산암류에 대한 암석화학적 연구)

  • 김진섭;백맹언;성종규
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.19-33
    • /
    • 1997
  • This study reports the results about the petrography and geochemical characteristics of 10 representative volacanic rocks. The Cretaceous volcanic rocks distributed in the vicinity of the Kageo island composed of andesitic rocks, dacitic welded tuff, and rhyolitic rocks in ascending order. Sedimentary rock is the basement in the study area covered with volcanic rocks. Andesitic rocks composed of pyroclastic volcanic breccia, lithic lapilli tuff and cryptocrystallin lava-flow. Most dacitic rocks are lapilli ash-flow welded tuff. Rhyolitic rocks consists of rhyolite tuff and rhyolite lava flow. Rhyolite tuff are lithic crystal ash-flow tuff and crystal vitric ash-flow tuff with somewhat accidental fragments of andesitic rocks, but dacitic rocks. The variation of major and trace element of the volcanic rocks show that contents of $Al_2O_3$, FeO, CaO, MgO, $TiO_2$ decrease with increasing of $SiO_2$. On the basis of Variation diagrams such as $Al_2O_3$ vs. CaO, Th/Yb vs. Ta/Yb, and $Ce_N/YB_N$ vs. $Ce_N$, these rocks represent mainly differentiation trend of calc-alkaline rock series. On the discriminant diagrams such as Ba/La and La/Th ratio, Rb vs. Y + Nb, the volcanic rocks in study area belongs to high-K Orogenic suites, with abundances of trace element and ternary diagram of K, Na, Ca. According to the tectonic discriminant diagram by Wood, these rocks falls into the diestructructive continental margin. K-Ar ages of whole rocks are from andesite to rhyolite $97.0{\pm}6.8~94.5{\pm}6.6,\68.9{\pm}4.8,\61.5{\pm}4.9~60.7{\pm}4.2$ Ma, repectively. Volcanic rocks in study area show well correlation to the Yucheon Group in terms of rock age dating and geochemcial data, and derived from andesitic calc-alkaline magma that undergone low pressure fractional crystallization dominated plagioclase at <30km.

  • PDF

Hydrochemistry and noble gas origin of hot spring waters of Icheon and Pocheon area in Korea (이천 및 포천지역 온천수의 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Koh, Yung-Kwon;Shin, Seon-Ho;Nagao, Keisuke;Kim, Kyu-Han;Kim, Gun-Young
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.529-541
    • /
    • 2009
  • Hydrochemical, stable isotopic ($\delta^{18}O$ and dD) and noble gas isotopic analyses of seven hot spring water samples, eleven groundwater samples and six surface water samples collected from the Icheon and Pocheon area were carried out to find out hydrochemical characteristics, and to interpret the source of noble gases and the geochemical evolution of the hot spring waters. The hot spring waters show low temperature type ranging from 21.5 to $31.4^{\circ}C$ and the pH value between 6.69 and 9.21. Electrical conductivity of hot spring waters has the range from 310 to $735\;{\mu}S/cm$. Whereas the hot spring water in the Icheon area shows the geochemical characteristics of neutral pH, the $Ca-HCO_3$(or $Ca(Na)-HCO_3$) chemical type and a high uranium content, the hot spring water in the Pocheon area shows the characteristics of alkaline pH, the $Na-HCO_3$ chemical type and a high fluorine content. These characteristics indicate that the hot spring water in the Icheon area is under the early stage in the geochemical evolution, and that the hot spring water in the Pocheon area has been geochemically evolved. The $\delta^{18}O$ and ${\delta}D$ values of hot spring waters show the range of $-10.1{\sim}-8.69%o$ and from $-72.2{\sim}-60.8%o$, respectively, and these values supply the information of the recharge area of hot spring waters. The $^3He/^4He$ ratios of the hot spring waters range from $0.09\;{\times}\;10^{-6}$ to $0.65\;{\times}\;10^{-6}$ which are plotted above the mixing line between air and crustal components. Whereas the helium gas in the Icheon hot spring water was mainly provided from the atmospheric source mixing with the mantle(or magma) origin, the origin of helium gas in the Pocheon hot spring water shows a dominant crustal source. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.

Petrochmical study on the Volcanic Rocks Related to Depth to the Benioff Zone and Crustal Thickness in the Kyongsang Basin, Korea: A Review (경상분지 화산암류의 지화학적 연구. 섭입대(베니오프대)의 깊이와 지각의 두께)

  • Jong Gyu Sung
    • Economic and Environmental Geology
    • /
    • v.32 no.4
    • /
    • pp.323-337
    • /
    • 1999
  • Late Cretaceous to early Tertiary volcanic rocks in the Kyongsang basin exhibit high-K calc-alkaline characteristics, and originated from the magmatism related genetically to subduction of Kula-Pacific plate. They represent HFSE depletion and LlLE enrichment characteristics as shown by magmas related to subduction. Early studies on the depth of magma generation has been estimated as 180-230 km based on K-h relation should be reevaluated, because the depth of peridotite partial melting with 0.4 wt. % water is 80-120 km at subduction zone, and subducting slab in premature arc can melted even lower than 70 km. Moreover the increase of potassium contents depends on either contamination of crustal material and fluids of subducting slab or low degree of partial melting. If the inclination of subduction zone is 30 degrees and the depth to the Benioff zone is 180-230 km, the calculated distance between the volcanic zone and trench axis would be 310-400 km. It is unlikely because the distance between the Kyongsang basin and trench during late Cretaceous to early Tertiary is closer than this value and not comparable with generally-accepted models in subduction zone magmatism. $K_{55}$ of the volcanics in the Kyongsang basin is 0.3-2.3 wt.% and the average indicate that the depth ranges between 80-170 km on the diagram of Marsh, Carmichael (1974). Fractionation from garnet lherzolite, assumed the depth of 180-230km, is not consistent with the REE patterns of the volcanoes in the Kyongsang basin. Futhermore, the range of depth suggested by many workers, who studied magmatism related to subduction, imply shallower than this depth. Crustal thickness calculated by the content of CaO and $Na_2O$ is about 30 km and about 35 km, respectively. Paleo-crustal thickness during late Cretaceous to early Tertiary times in the Kyongsang basin inferred about 30 km calculated by La/Sm versus LaJYb data, which is also supported by many previous studies.

  • PDF

Mineral chemistry and major element geochemistry of the granitic rocks in the Cheongsan area (청산 일대에 분포하는 화강암류의 광물조성과 주성분원소 지구화학)

  • 사공희;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.185-209
    • /
    • 1997
  • Granitic rocks in the Cheongsan area cosist of three plutons-Baegrog granodiorite, Cheongsan porphyritic granite, and two mica granite. Amphilboles from the Baegrog granodiorite belong to the calcic amphilbole group and show compositional variations from magnesio-hornblende in the core to actinolitic hornblende in the rim. Biotites from the three granites represent intermediate compositions between phlogopite and annite. Muscovites from the two mica granite are considered to be primary muscovite in terms of the occurrence and mineral chemistry. Each granitic rock reveals systematic variation of major oxide contents with $SiO_2$. Major oxide variation trends of the Baegrog granodiorite are fairly different from those of Cheongsan porphyritic granite and two mica granite. The latter two granitic rocks are also different with each other in variation trends for some oxides. Thus three granitic rocks in the Cheongsan area were solidifield from the independent magmas of chemically different, heterogeneous origin. The granitic rocks in the area show calc-alkaline nature. The whole rock geochemistry shows that the Baegrog granodiorite and Cheongsan porphyritic granite belong to metaluminous, I-type granite, whereas the two mica granite to peraluminous, I/S-type granite. The opaque mineral contents and magnetic susceptibility represent that the granitic rocks in the area are ilmenite-series granite, indicating that each magma was solidified under relatively reducing environment. The tectonic environment of the granitic activity in the area seems to have been active continental margin. Alkali feldspar megacryst in the Cheongsan porphyritic granite is considered to be magmatic, judging from the crystal size, shape, arrangement, and distribution pattern of inclusions. The petro-graphical characteristics of the Cheongsan porphyritic granite can be explained by two stage crystallization. Under the smaller degree of undercooling the alkali feldspar megacrysts rapidly grew owing to slow rate of nucleation and fast growth rate. At the larger degree of undercooling the nucleation rate and density drastically increased and the small crystals of the matrix were formed.

  • PDF

Adakitic Signatures of the Jindong Granitoids (진동화강암체의 아다카이틱한 특성)

  • Wee, Soo-Meen;Kim, Yun-Ji;Choi, Seon-Gyu;Park, Jung-Woo;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.40 no.2 s.183
    • /
    • pp.223-236
    • /
    • 2007
  • The eastern extension of the Cordilleran-type orogenic belt continues from southeastern China to the Chukot Peninsula through the Korean Peninsula. The Gyeongsang basin, located in the southeastern part of the Korean Peninsula and the Inner Zone of southwest Japan are characterized by extensive distribution of Cretaceous to Tertiary I-type calc-alkaline series of intrusive rocks. These intrusive rocks are possibly the result of intensive magmatism which occurred in response to the subduction of the Izanagi Plate beneath the northeastern part of the Eurasian Plate. The Jindong granitoids within the Gyeongsang basin are reported to be adakites, whose signatures are high $SiO_2,\;Al_2O_3$, Sr, Sr/Y La/Yb and, low Y and Yb contents. The major and trace element contents of the Jindong granitoids fall well within the adakitic field, whereas other Cretaceous granites in the same basin are plotted in the island arc ADR area in discrimination diagrams. Chondrite normalized REE patterns show generally enriced LREEs (La/Yb)C = 3.6-13.8) and slight negative to flat Eu anomalies. The mean Rb-Sr whole rock isotopic age of the Jindong granitoids is $114.6{\pm}9.1$ Ma with an initial Sr isotope ratio of 0.70457. These values suggest that the magma has mantle signature and intruded into the area during Early Cretaceous. The Jindong granitoids have similar paleogeographical locations, paleotectonic environments and intrusion ages to those of the Shiraishino granodiorites of Kyushu Island and the Tamba granitoids of San'yo belt located on southwestern Japanese arc.

The Study on Geology and Volcanism in Jeju Island (I): Petrochemistry and $^{40}Ar/^{39}Ar$ Absolute ages of the Subsurface Volcanic Rock Cores from Boreholes in the Eastern Lowland of Jeiu Island (제주도의 지질과 화산활동에 관한 연구 (I): 동부지역 저지대 시추코어 화산암류의 암석화학 및 $^{40}Ar/^{39}Ar$ 절대연대)

  • Koh, Gi-Won;Park, Jun-Beom;Park, Yoon-Suk
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.93-113
    • /
    • 2008
  • This study presents petrochemistry and $^{40}Ar/^{39}Ar$ absolute ages of subsurface volcanic rock cores from twenty(20) boreholes in the eastern lowland (altitude loom below) of Jeju Island, Handeong-Jongdal-Udo-Susan-Samdal-Hacheon areas, and discusses topography and volcanism in the area. The subsurface volcanic rock cores are mainly basalts in composition with minor tholeiitic andesites and basaltic trachyandesites. Sequences of intercalated tholeiitic, transitional and alkalic lavas suggest that tholeiitic and transitional to alkalic lavas must have erupted contemporaneously. Especially, occurrences of trachybasalts and basaltic trachyandesites at the bases in the area imply that the volcanism in the area was initiated with slightly differentiated alkaline magma activity. The $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores range from $526{\pm}23ka\;to\;38{\pm}4Ka$. The lava-forming Hawaiian volcanic activities of the eastern lowland can be divided into five sequences on the basis of sediment distribution, whole rock geochemistry and $^{40}Ar/^{39}Ar$ absolute ages of the subsurface volcanic rock cores; stage I-U$(550{\sim}400Ka)$, stage II$(400{\sim}300Ka)$ and stage III$(300{\sim}200Ka)$ during syn-depositional stage of Seoguipo Formation, and stage IV$(200{\sim}100Ka)$ and stage V(younger than 100Ka) during post-depositional stage. In the eastern lowland of Jeju Island, compositional variations and local occurrences of the subsurface volcanic rocks as well as existences of various intercalated sediment layers (including hydrovolcanogenic clasts) suggest that the volcanism must have continued for long time intermittently and that the land has been progressively glowed from inland to coast by volcanic activities and sedimentation. It reveals that the subsurface volcanic rocks in the eastern lowland of Jeju Island must have erupted during relatively younger than 200Ka of stages IV and V. The results of this study are partly in contrast with those of previous studies. This study stresses the need that previous reported volcanic activities in Jeju Island based on K-Ar ages of volcanic rocks should be carefully reviewed, and that stratigraphic correlation from boreholes should be conducted by quantitative criteria combined with petrography and petrochemstry as well as radiometric studies of volcanic rock cores.

Petrology and Geochemistry of Jurassic Daejeon and Nonsan Granitoids in the Ogcheon Fold Belt, Korea (옥천(沃川) 변성대(變成帶)에 분포하는 쥬라기(紀) 대전(大田) 및 논산(論山) 화강암류(花崗岩類)의 암석지화학적(岩石地化學的) 연구(硏究))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.17 no.3
    • /
    • pp.179-195
    • /
    • 1984
  • The Jurassic Daejeon and Nonsan granitoids are "S-type" syntectonic calc-alkaline two-mica monzogranite and granodiorite, respectively. With evidences of high CaO, $Al_2O_3$, LIL/HFS elements, total REE, (Ce/Yb)N and initial ($^{87}Sr/^{88}Sr$) ratio, and no significant Eu anomaly, the primary magmas for the Daejeon and Nonsan granitic rocks are derived from partial melting of the Precambrian granulite (e.g. grey gneisses). But those Jurassic granitoids crystallised from different chemical characteristics of parental magmas which is mainly due to varying degree of partial melting of the granulite (crustal anatexis). The absence of significant anomalous Eu($Eu/Eu^*=O.82{\sim}1.00$) in the Daejeon and Nonsan granitoids could indicate that feldspars, mainly plagioclase, did not separate from the magmas. The parental hydrous magmas could not rise appreciably above their source region before crystallisation. The Jurassic granitoids may be resulted by closing-collision situation and belong to the Hercynotype (Pitcher 1979) such as compressive ductile regime of an intracontinental orogen.

  • PDF

Petrology and petrochemistry of the Jurassic Daebo granites in the Pocheon-Gisanri area (포천 - 기산리 일대에 분포하는 쥬라기 대보화강암류의 암석 및 암석화학)

  • 윤현수;홍세선;이윤수
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • The study area is mostly composed of Precambrian Gyeonggi gneiss complex, Jurassic Daebo granites, Cretaceous tonalite and dykes, and so on. On the basis of field survey and mineral assemblage, the granites can be divided into three types; biotite granite (Gb), garnet biotite granite (Ggb) and two mica granite (Gtm). They predominantly belong to monzo-granites from the modes. Field relationship and K-Ar mica age data in the surrounding area suggest that intrusive sequences are older in order of Gtm, Ggb and Gb. Gb and Ggb, major study targets, occur as medium-coarse grained rocks, and show light grey and light grey-light pink colors, respectively. Mineral constituents are almost similar except for opaque in Gb and garmet in Ggb. Gb and Ggb have felsic, peraluminous, subalkaline and calc alkaline natures. In Harker diagram, both rocks show moderately negative trends of $TiO_2$, MgO, CaO, $Al_2O_3$, $Fe_2O_3$(t), $K_2O$ and $P_2O_5$ as $SiO_2$ contents increase. Among them, $TiO_2$, MgO and CaO show two linear trends. From the trends and the linear patterns in AFM, Sr-Ba and Rb-Ba-Sr relations, it is likely that they were originated from the same granitic magma and Ggb was differentiated later than Gb. REE concentrations normalized to chondrite value have trends of parallel LREE enrichment and HREE depletion. One data of Ggb showing a gradually enriched HREE trend may be caused by garnet accompaniment. Ggb have more negative Eu anomalies than Gb, suggesting that plagioclase fractionation in Ggb have occurred much stronger than that in Gb. In modal (Qz+Af) vs. Op, Gb and Ggb belong to magnetite-series and ilmenite-series, respectively. From the EPMA results, opaques of Gb are magnetite and ilmenite, and those of Ggb are magnetite-free ilmenite or not observed. Bimodal distribution of magnetic susceptibility reveals two different granites of Gb (332.6 ${mu}SI$) and Ggb (2.3 ${mu}SI$). Based on the paleomagnetic analysis as well as modal analysis, the main susceptibilities of Gb and Ggb reside in magnetite and mafic minerals, respectively. They belong to S-type granite of non-magnetic granite by susceptibility value. In addition, $SiO_2$ contents, $K_2O/Na_2O$, A/CNK molar ratio and ACF diagram support that they all belong to S-type granites.

Petrochemistry of the Pink Hornblende Biotite Granite in the Galmal-Yeongbug Area of the North Gyeonggi (경기북부 갈말-영북일대 백악기 홍색 각섬석흑운모화강암의 암석화학)

  • Yun, Hyun-Soo;Hong, Sei-Sun;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.4 s.46
    • /
    • pp.167-179
    • /
    • 2006
  • Division of granites in the Galmal-Yeonbug area, northern Gyeonggi, can be grey hornblende biotite granite (JHBG), biotite granite (JBG) and pink hornblende biotite granite (CHBG) by lithofacies. JHBG of small stock occurs as medium-grained with grey color and minute sphene. JBG occurs as medium-grained and light grey to grey in the north-east part of the area. The main study target CHBG covers in the north-southeast part of the area, and occurs medium-to coarse-grained with pink color. CHBG shows partly minute miaroles, and pegmatitic pocket with druse texture. From the mineral age data (K-Ar method). JHBG and JBG and CHBG are the igneous activity products of Daebo orogeny with different Jurassic and Bulgugsa disturbance of Cretaceous, respectively. And the age data also agree with geologic occurrences and interpretations of the granites in the field. CHBG consists of quartz, plagioclase, alkali-feldspar, biotite, hornblende, allanite, apatite, zircon, some calcite and opaques. Among them, alkalifeldspar and calcite occur characteristically in mostly perthitic othoclase and secondary filling of minutely miarolitic cavity, respectively. In modal analysis and QAP diagram, CHBG plots in granite field, and especially boundary of monzo-and syeno-granite fields. From the major oxide variations, molar A/CNK, $SiO_{2}\;vs\;K_{2}O$, AMF and so on, CHBG belongs to the acidic, peraluminous and high-K calc-alkaline, and was late differentiation product of single granitic magma. Barium and strontium have also dominantly differentiation trend, and in CaO vs Sr and $K_{2}O$ vs Sr, Sr was more participitated in the fractionation of plagioclase than that of alkali-feldspar. Normalized REE concentrations to chondrite value have parallel and gradual LREE enrichment and HREE depletion patterns, and weak Eu negative anomalies and narrow ranges of normalized Eu can suggest that plagioclase fractionations occurred mildly in the whole CHBG.