• Title/Summary/Keyword: Alkaline feldspar

Search Result 37, Processing Time 0.025 seconds

Crystal Structure and Photoluminescence of Domestic Natural Alkaline Feldspar (국산 천연알카리 장석의 결정구조와 Photoluminescence)

  • Choi, Jin-Ho;Cheon, Chae-Il;Kim, Jeong-Seog
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.5 s.300
    • /
    • pp.155-159
    • /
    • 2007
  • Blue light-emitting phosphors having the excitation spectrum range of the medium-long ultraviolet ($280nm{\sim}400nm$) have been prepared by solid state reaction method. As a starting material the natural alkaline feldspar powder produced from the domestic mine field in Buyeo, Chungnam-do. The photoluminescence characteristics and crystal structures have been analyzed for the phosphor samples. The powder mixture of the natural alkaline feldspar and the rare-earth oxide was calcined at $800{\sim}1000^{\circ}C\;for\;3{\sim}4h$ in air. The calcined samples we fully ground at room temperature and then heat-treated in the mild reducing gas atmosphere of $5%H_2-95%N_2$ mixture at $1100{\sim}1150^{\circ}C\;for\;3{\sim}4h$. The natural alkaline feldspar material consists of the monoclinic orthoclase ($KAlSi_3O_8$) and the triclinic albite ($NaAlSi_3O_8$) phases. At the $0.5wt%Eu_2O_3$ addition the PL spectrum showed the maximum intensity and with further increase of $Eu_2O_3$ the PL intensity decreased. The albite phase disappeared in the $Eu_2O_3$ doped phosphors. The effect of the co-doped activator on the PL characteristics have been also discussed.

Petrochemistry of Mesozoic Granites in Wolchulsan Area (월출산지역에 분포하는 중생대 화강암류에 대한 암석화학적 연구)

  • Kim, Cheong-Bin;Yoon, Chung-Han;Kim, Jeong-Taek;Park, Jay-Bong;Kang, Sang-Won;Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.27 no.4
    • /
    • pp.375-385
    • /
    • 1994
  • The studied area is composed of Precambrian gneiss complex, middle Jurassic biotite granite, late Cretaceour sediments, volcanics and pink feldspar granite. Characteristic minerals of the biotite granite is plagioclase and hornblende whereas the pink feldspar granite is pink feldspar (perthite) and quartz. Plagioclase compositions of the biotite granite and the pink feldspar granite are oligoclase to calcic andesine ($An_{18-44}$) and sodic albite ($An_{0.5-5.0}$), respectively. In the variation diagrams of the Harker and normative Q-Or-Pl diagram, the biotite granite belongs to the category from granodiorite to granite, the pink feldspar granite from nomal to late granite. The values of D.I. L.I. and alkalinity of the pink feldspar granite are higher than those of the biotite granite. While CaO is enriched in the biotite granite, $K_2O$ is enriched in the pink feldspar granite. The ratio of $K_2O/Na_2O$ which indicates the relative ratio of alkali is 1.06 in the pink feldspar granite, and 0.86 in the biotite granite. In A-M-F and N-C-K diagrams both these granites are plotted in peraluminus granite ($Al_2O_3$>$Na_2O+K_2O+CaO$) region, assigned to calc alkaline series and alkaline series respectively. Put into the form of A-C-F diagram, the biotite granite falls under I-type, and the pink feldspar granite S-type. On the base of whole rock ratios of $Fe^{+3}/Fe^{+2}+Fe^{+3}$ and $^{87}Sr/^{86}Sr$ for the granites in studied area, the biotite granite indicates ilmenite series (0.26) and S-type and/or contaminated I-type ($0.72020{\pm}0.00050$), the pink feldspar granite magnetite series (0.44) and I-type ($0.70826{\pm}0.00020$).

  • PDF

Geochronology and Petrochemistry of Foliated Granites between Damyang and Jinan (담양(潭陽)-진안(鎭安)사이에 분포(分布)하는 엽리상화강암류(葉理狀花崗岩類)에 대(對)한 지질시대(地質時代)와 성인(成因)에 관(關)한 연구(硏究))

  • Kim, Cheong Bin;Kim, Yong Jun
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.233-244
    • /
    • 1990
  • Plutons of Damyang-Jinan area consist of gray feldspar granite gneiss, biotite granite gneiss, foliated granites, Namweon granites, gabbro, biotite granite and Ogangri granite in term of mineralogical, texture and field evidence. From Isotope data of study area, chronological order of the Plutons are the Pre-cambrian gray feldspar granite gneiss(Ar39-Ar40, hornblende, $1998.4{\pm}8.3Ma$), middle to late Triassic Daegang foliated granite(Rb/Sr, whole rock, $288{\pm}4Ma$), foliated hornblende biotite granodiorite(K/Ar, hornblende, $198.7{\pm}9.9Ma$), Sunchang foliated granodiorite(Rb/Sr, whole rock, $222{\pm}4Ma$), foliated two mica granite, Samori foliated granite and Namweon granite(Rb/Sr, whole rock, $211{\pm}3Ma$: K/Ar, hornblende, $203{\pm}10.2Ma$), middle Jurassic Gabbro(K/Ar, hornblende, $180.7{\pm}9MA$) and biotite granite, and Cretaceous Ogangri granite. According to variations diagrams of $Al_2O_3$ versus normative PI(100 An)/(Ab+An), Daegang foliated granite is plotted on tholeiitic series, and other foliated granites on calc alkaline rock series which are consider to be formed by magmatism at continental margin and island arc region. And alkalinity versus $SiO_2$ shows that Daegang folited granite and Samori foliated granite are correspond to alkaline region, foliated hornblende biotite granodiorite and Sunchang foliated granodiorite to calc alkaline region, and foliated two mica granite to both regions. According to ACF diagrams, Daegang and Samori foliated granites are plotted on S-type. Foliated hornblende biotite granodiorite and Sunchang foliated granodiorite on I-type, and foliated two mica granite on both type. Foliated granites are a series of differentiated products from cogenetic magma, and effected under ductile sheared zone. Characteristic foliation of foliated granites are considered to be generated by dextral strike slip faulting and ductile shearing.

  • PDF

Geochemistry and Petrogenesis of Pliocene Alkaline Volcanic Rocks of Dok Island, Korea

  • Wee, Soo Meen
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.447-459
    • /
    • 2015
  • Dok island comprises Pliocene volcanic products such as a series of volcanoclastic rocks and lavas ranging in composition from alkali basalts, and trachyandesites to trachytes. Compositional variation of the basaltic rocks can be attributed to fractional crystallization of olivine, clinopyroxene, plagioclase, and magnetite. Chemical variations among the trachyandesites are caused by fractionation of clinopyroxene, plagioclase, and magnetite with minor amphibole, while trachytes are controlled mainly by feldspar fractionation. Incompatible element abundance ratios and chondrite normalized LREE/HREE ratios (e.g., (La/Yb)c: 24.8 to 32.8 for basalts, 15.6 to 31.2 for trachyandesites) suggest that the origins of the basalts and trachyandesites involve both different degrees of partial melting and subsequent fractional crystallization processes. Trace element ratios of the basalts from Dok island are characterized by high Ba/Nb, La/Nb, Ba/Th and Th/U and isotopic ratios (Tasumoto and Nakamura, 1991) that are similar to the EM 1 type of oceanic island basalts such as Gough and Tristan da Cunha basalts.

Petrology of the Blastoporphyritic Granite Gneiss in the Southwestern Part of the Sobaegsan Massif (소백산육괴 서남부의 잔류반상 화강편마암의 암석학적 연구)

  • Lee, Choon-Hee;Lee, Sang-Won;Ock, Soo-Seck;Song, Young-Sun
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.528-547
    • /
    • 2001
  • The blastoporphyritic granite gneiss (BPGN) including much alkali-feldspar megacrysts occurs in Jiri mountains area, southwestern part of Sobaegsan massif, Korea. The BPGN is formed gneiss complexes with other gneisses in Precambrian. The BPGN was named as porphyroblastic gneiss with porphyroblasts of alkali-feldspar megacrysts by other researchers, but the BPGN includes of euhedral alkali-feldspars (microcline), and the boundary with the granitic gneiss represents sharp contact as intrusive relationship. The BPGN mainly composes of alkali-feldspar megacrysts, quartz, plagioclase, K-feldspar and biotite some almandine and accessary minerals are muscovite, chlorite, apatite, zircon and opaques. The alkali-feldspar is microcline with perthitic texture. An content of plagioclases show 30 to 40. Biotites occur two type, one is Brown biotite which shows compositional ranges of Mg/Fe+Mg ratios from 0.38 to 0.52, the other is Green Bt. which is retrograde product. Camels to be various sizes and shapes have composition of almandine with 73 to 80 mole percent, but represent retrogressive zoning from core (X$_{pyr}$: 15.9${\sim}$20.8) to rim (X$_{pyr}$:13.7${\sim}$15.9) to be evidence of retrograde metamorphism. Megacrysts of alkali-feldspar in the BPGN show rectangular shape of euhedral and some become ellipsoidal or spheroidal in shape and the average size up to 20 cm long. The megacryst includes of biotite, plagioclase and quartz, and rarely euhedral apatite as inclusions. In petrochemistry the BPGN represents granodiorite composition, characteristics of peraluminous S-type granitoid and calc-alkaline features.

  • PDF

Geochemistry and Petrogenesis of Pan-african Granitoids in Kaiama, North Central, Nigeria

  • Aliyu Ohiani Umaru;Olugbenga Okunlola;Umaru Adamu Danbatta;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.259-275
    • /
    • 2023
  • Pan African granitoids of Kaiama is comprised of K-feldspar rich granites, porphyritic granites, and granitic gneiss that are intruded by quartz veins and aplitic veins and dykes which trend NE-SW. In order to establish the geochemical signatures, petrogenesis, and tectonic settings of the lithological units, petrological, petrographical, and geochemical studies was carried out. Petrographic analysis reveals that the granitoids are dominantly composed of quartz, plagioclase feldspar, biotite, and k-feldspar with occasional muscovites, sericite, and opaque minerals that constitute very low proportion. Major, trace, and rare earth elements geochemical data reveal that the rocks have moderate to high silica (SiO2=63-79.7%) and alumina (Al2O3=11.85-16.15) contents that correlate with the abundance of quartz, feldspars, and biotite. The rocks are calc-alkaline, peraluminous (ASI=1.0-<1.2), and S-type granitoids sourced by melting of pre-existing metasedimentary or sedimentary rocks containing Al, Na, and K oxides. They plot dominantly in the WPG and VAG fields suggesting emplacement in a post-collisional tectonic setting. On a multi-element variation diagram, the granitoids show depletion in Ba, K, P, Rb, and Ti while enrichment was observed for Th, U, Nd, Pb and Sm. Their rare-earth elements pattern is characterized by moderate fractionation ((La/Yb)N=0.52-38.24) and pronounced negative Eu-anomaly (Eu/Eu*=0.02-1.22) that points to the preservation of plagioclase from the source magma. Generally, the geochemical features of the granitoids show that they were derived by the partial melting of crustal rocks with some input from greywacke and pelitic materials in a typical post-collisional tectonic setting.

Petrology and Geochemistry of the Cretaceous Palgongsan Granite, Southern Korea (백악기(白堊紀) 팔공산(八公山) 화강암(花崗岩)의 암석학적(岩石學的) 및 지구화학적(地球化學的) 연구(硏究))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.16 no.2
    • /
    • pp.83-109
    • /
    • 1983
  • The Cretaceous Palgongsan granite is a typical, calc-alkaline, subsolvus monzogranite and shows characteristics of "I-type" granite by mineralogy and chemical composition. Many of the major and trace element characteristics of the Palgongsan granite are consistent with a relationship by fractional crystallisation to form a chemically zoned pattern. The granite show light REE enrichment with (Ce/Yb)N ratios of 5.78-9.50. All the REE patterns show Eu negative anomalies which become larger from the margin ($Eu/Eu^*=0.75$) to the core ($Eu/Eu^*=0.24$) of the pluton, mainly due to feldspar fractionation. Mineral geochemistry (alkali-feldspar, plagioclase & biotite) studies also show the zonal structure of the Palgongsan granite. The two-feldspar geothermometer shows that the temperature difference between the margin and the core part of the pluton is about $200^{\circ}C$ at various assumed pressures.

  • PDF

Petrology and Petrochemistry of the Cretaceous Granites in the Southern Mungyeong Area (문경(聞慶) 남부일대(南部一帶)에 분포(分布)하는 백악기(白惡紀) 화남암류(花南岩類)의 암석학(岩石學) 및 암석화학(岩石化學))

  • Yun, Hyun Soo;Kim, Seon Eok
    • Economic and Environmental Geology
    • /
    • v.23 no.3
    • /
    • pp.343-352
    • /
    • 1990
  • The Cretaceous granites are widely distributed in the studied area, Mungyeong-Sangju, which belongs to the southwestern part of the Ogcheon Folded Belt. The granites are characterized by medium-coarse grained, spotted miaroles, partly flow textures of biotite, aplitic dykes and pegmatitic pockets with druse. From the major compositions, the granites indicate peraluminous, calc-alkaline, salic and late stage products of differentiation. In the view of normative compositions of Qz-Ab-Or and perthitic alkali feldspar, they were formed under 1-4kb and $426^{\circ}-456^{\circ}C$ in acqueous conditions. The K/ Ar biotite age shows $72{\pm}1$ Ma for this grante, corresponding to the igneous activity of the Bulgugsa Disturbance periods in the area. The above results represent that these granite bodies are differentiated from a single magma.

  • PDF

Geochemistry of Uranium and Thorium Deposits from the Kyemyeongsan Pegmatite (계명산층 페그마타이트에 수반되는 우라늄·토륨 광상의 지구화학적 특성)

  • Park, Maeng-Eon;Kim, Gun-Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.365-374
    • /
    • 1998
  • Economic U- and Th-bearing pegmatite deposits occur in the Kyemyeongsan Formation, and are spatially closely associated with the Carboniferous alkali granite. The pegmatite is lithochemically alkaline and peralumious, and consists mainly of potassic feldspar and quartz with allanite and U- and Th-bearing minerals. Paragenetic stages of mineralization in the pegmatite are divided as follows: early silicate mineralization, main rare metal mineralization, and late silicate mineralization. Thorite, euxenite, fergusonite and uranpyrochlore are the predominant U- and Th-bearing minerals. Both the enrichments of Nb, Y, Th, U, and Ta and the depletions of Hf, Ba, and Rb in the pegmatite were resulted from magmatic differentiation. The increases of Na and Ca in uranpyrochlore, of Th and U in fergusonite, of Si, Th, U and Pb in thorite, and of Nb and Y in euxenite were possibly resulted from both later internal fractionation and hydrothermal alteration. The variation of chemical composition in a mineral species reflects the different pysico-chemical conditions during the crystallization.

  • PDF

The Geochemical and Zircon Trace Element Characteristics of A-type Granitoids in Boziguoer, Baicheng County, Xinjiang (중국 신장 위그루자치구 바이청현 보즈구얼의 A형화강암류의 지화학 및 지르콘 미량원소특징에 대한 연구)

  • Yin, Jingwu;Liu, Chunhua;Park, Jung Hyun;Shao, Xingkun;Yang, Haitao;Xu, Haiming;Wang, Jun
    • Economic and Environmental Geology
    • /
    • v.46 no.2
    • /
    • pp.179-198
    • /
    • 2013
  • The Boziguoer A-type granitoids in Baicheng County, Xinjiang, belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks. The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite, an aegirine or arfvedsonite alkali feldspar granite, and a biotite alkali feldspar syenite. The major rock-forming minerals are albite, K-feldspar, quartz, arfvedsonite, aegirine, and siderophyllite. The accessory minerals are mainly zircon, pyrochlore, thorite, fluorite, monazite, bastnaesite, xenotime, and astrophyllite. The chemical composition of the alkaline granitoids show that $SiO_2$ varies from 64.55% to 72.29% with a mean value of 67.32%, $Na_2O+K_2O$ is high (9.85~11.87%) with a mean of 11.14%, $K_2O$ is 2.39%~5.47% (mean = 4.73%), the $K_2O/Na_2O$ ratios are 0.31~0.96, $Al_2O_3$ ranges from 12.58% to 15.44%, and total $FeO^T$ is between 2.35% and 5.65%. CaO, MgO, MnO, and $TiO_2$ are low. The REE content is high and the total ${\sum}REE$ is $(263{\sim}1219){\times}10^{-6}$ (mean = $776{\times}10^{-6}$), showing LREE enrichment HREE depletion with strong negative Eu anomalies. In addition, the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type. The Zr content is $(113{\sim}1246){\times}10^{-6}$ (mean = $594{\times}10^{-6}$), Zr+Nb+Ce+Y is between $(478{\sim}2203){\times}10^{-6}$ with a mean of $1362{\times}10^{-6}$. Furthermore, the alkaline granitoids have high HFSE (Ga, Nb, Ta, Zr, and Hf) content and low LILE (Ba, K, and Sr) content. The Nb/Ta ratio varies from 7.23 to 32.59 (mean = 16.59) and the Zr/Hf ratio is 16.69~58.04 (mean = 36.80). The zircons are depleted in LREE and enriched in HREE. The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly. The Boziguoer A-type granitoids share similar features with A1-type granites. The average temperature of the granitic magma was estimated at $832{\sim}839^{\circ}C$. The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature, anhydrous, and low oxygen fugacity conditions.