• Title/Summary/Keyword: Alkaline carboxymethyl cellulase (CMCase)

Search Result 8, Processing Time 0.026 seconds

Production of Alkaline Carboxymethyl Cellulase and Xylanase by Batch and Fed-batch Cultures of Alkalophilic Cephalosporium sp. RYM-202 (호알카리성 Cephalosporium sp. RYM-202의 회분 및 유가배양에 의한 Alkaline Carboxymethyl Cellulase와 Xylanase의 생산)

  • Kang, Myoung-Kyu;Kim, Do-Young;Rhee, Young-Ha
    • The Korean Journal of Mycology
    • /
    • v.25 no.2 s.81
    • /
    • pp.91-100
    • /
    • 1997
  • Production of alkaline carboxymethyl cellulase (CMCase) and xylanase by batch and fed-batch cultures of alkalophilic Cephalosporium sp. RYM-202 was investigated. Of carbon sources tested, wheat bran gave the highest production of those enzymes. The high levels of CMCase on carboxymethyl cellulose and xylanase on birchwood xylan suggest that the biosynthesis of CMCase and xylanase in Cephalosporium sp. RYM-202 is regulated separately at the level of enzyme induction. The temperature and pH for maximal production of those enzymes was $20^{\circ}C$ and 9.0, respectively. High concentration of wheat bran in batch fermentation resulted in the lower and delayed production of the enzymes by catabolite repression. In fed-batch fermentation with controlled feeding of 5% final wheat bran concentration, the highest activities of CMCase and xylanase were 0.39 and 9.2 units/ml, respectively, and 1.22 and 1.36 times higher respectively than those in batch fermentation on 5% wheat bran.

  • PDF

Preparation and Characteristics of Alkaline -active Cellulases from Coprinaceae

  • Lee, Jung-Kyung;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.3
    • /
    • pp.68-76
    • /
    • 1999
  • Coprinus cinereus 2249 producing alkaline-active cellulase was screened from 29 species of Corpinaceae and constitutively produced alkaline carboxymethyl cellulase (CMCase) and filter paper cellulase (Fpase). When cultivated at pH 9.0, 25$^{\circ}C$ and 5 days, copnnus cinereus 2249 produced higher alkaline activity on 0.5% CMC, 2% wheat bran as carbon source and 0.5% peptone, 0.05% yeast extract as nitrongen source compared with other culture conditions. The level of cellulase production was higher in the presence of wheat bran than in the presence of CMC. The optimum temperature and pH for alkaline -active cellulase activity weas 50$^{\circ}C$ and 9, 0, respectively.

  • PDF

RECYCLING OF WASTEPAPER WITH ALKALINE ENZYME FROM COPRINACEAE SP.

  • Eom, Tae-Jin;Lee, Jung-Myoung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.04b
    • /
    • pp.291-295
    • /
    • 1999
  • Coprinus cinereus 2249 that is a kind of basidiomycetes constitutively produced alkaline carboxymethyl cellulase (CMCase), filter paper cellulase (FPase) and xylanase. Crude enzymes prepared with optimal conditions showed higher FPase activity than CMCase activity. The FPase was most active at pH 9 at 50$^{\circ}C$. When applied on deinking of the old newsprint (ONP), it increases the freeness and brightness due to effect of hydrolysis at 0.1% enzyme concentration. Also, The physical properties of deinked pulp were improved.

Partial Purification and Some Properties of Carboxymethyl Cellulases from Alkalophilic Cephalosporium sp. RYM-202 (호알칼리성 Cephalosporium sp. RYM-202가 생산하는 carboxymethyl cellulase의 부분정제 및 특성)

  • Kang, Myoung-Kyu;Park, Hee-Moon;Rhee, Young-Ha;Kim, Yun-Seog;Kim, Yeo-Kyung
    • The Korean Journal of Mycology
    • /
    • v.21 no.4
    • /
    • pp.301-309
    • /
    • 1993
  • An alkalophilic Cephalosporium sp. RYM-202 capable of producing cellulase components was isolated from soil. This organism grew best at an initial pH 9.0 and produced cellulase maximal at an initial pH 9.5-10.0. Three carboxymethyl cellulases(CMCases), P-I-I, P-I-II and P-II-I, were partially purified by DEAE-Sephadex A-50 ion exchange column followed by Sephadex G-150 gel filtration. The optimum pH values for activity were 7.5 for P-I-I, 8.0-9.5 for P-I-II and 7.5-10.0 for P-II-I. All CMCases were stable between pH 4.5 and 12.0. Temperature optima for activity ranged between 40 and $60^{\circ}C$ and more than 50% of the maximum activity was observed at $20^{\circ}C$ for both of P-I-I and P-II-I. The activity of CMCases was significantly stable in the presence of various laundry components, such as, surfactants, chelating agents and alkaline proteinases.

  • PDF

Isolation and Characterization of an Alkalophilic Cellulolytic Bacterium Pseudomonas sp. (호알칼리성 섬유소분해세균 Pseudomonas sp.의 분리 및 특성)

  • Lim, Sang-Ho;Yoon, Min-Ho;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.124-130
    • /
    • 1998
  • An alkalophilic bacterium, the strain AC-711 as a potent producer of alkaline cellulase, was selected among many isolates from soil environments. Morphological, physiological and chemical characteristics of the strain AC-711 suggested that it belongs to the genus Pseudomonas according to the Bergey's Manual of Systematic Bacteriology, however the G+C mol% (54.43) of its chromosomal DNA is lower than the normal values of the genus. The major cell wall fatty acids were determined as 15:0 and 17:0 anteiso. The production of alkaline CMCase by the strain was maximal when grown on the mediun containing 1% carboxymethyl cellulose, 0.1% $KH_2PO_4$, 0.02% $CoCl_2$, 0.02% Tween 80, 0.5% $Na_2CO_3$, 0.8% yeast extract, pH 10.3 at $30^{\circ}C$ for 3 days, and the most of enzyme was excreted into culture mediun.

  • PDF

Characterization of Cellulolytic Activity from Pseudomonas sp. JH1014 (Pseudomonas sp. JH1014의 섬유소분해 활성 특성)

  • Heo, Hee-Yeon;Jeong, Yu-Jin;Shin, Eun-Sun;Kwon, Eun-Ju;Kim, Yu-Jeong;Kim, Jung-Ho;Kim, Hoon
    • Applied Biological Chemistry
    • /
    • v.48 no.4
    • /
    • pp.322-325
    • /
    • 2005
  • Pseudomonas sp. JH1014 was isolated from stream water as a detergent-compatible alkaline protease producing microorganism. The strain produced no detectable cellulolytic activity in LB medium. The addition of carboxymethyl cellulose induced the production of carboxymethyl cellulase (CMCase) without causing any significant change in the growth pattern of the strain. The strain reached its maximum growth after 9 to 12 h at $37^{\circ}C$, and the production of CMCase in the presence of the substrate reached its maximum after 21 h of growth at $37^{\circ}C$. The optimum pH of the crude enzyme preparation was pH 6.0. The enzyme had an optimal temperature at $55^{\circ}C$, and retained 70% of its original activity when preincubated at $70^{\circ}C$ for 10 min. Activity staining of the crude enzyme preparation separated on an SDS-PAGE gel showed two active bands with molecular masses of 54 and 30 kDa, indicating that Pseudomonas sp. JH1014 produced at least 2 kinds of CMCase.

Effect of Feeding Chemically Treated Mustard (Brassica campestris) Straw on Rumen Fibre Degrading Enzymes in Sheep

  • Vaithiyanathan, S.;Raghuvanshi, S.K.S.;Mishra, A.S.;Tripathi, M.K.;Misra, A.K.;Prasad, R.;Jakhmola, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.11
    • /
    • pp.1610-1613
    • /
    • 2003
  • The aim of the experiment was to study the changes in the activities of various rumen fibre degrading enzymes due to the feeding of chemically treated mustard (Brassica campestris) straw in sheep. Mustard straw (MS) (<5 cm particle size) was treated either with urea (4% (w/w), or with 2% sodium hydroxide (NaOH), or with alkaline hydrogen peroxide (2% NaOH and 1.5% hydrogen peroxide ($H_2O_2$)) and/or supplemented with 2% (w/w) urea. Seven maintenance type rations were prepared using MS (70 parts) with molasses (5 parts) and concentrate (25 parts). They were untreated MS (CMS), urea treated MS (UMS), urea supplemented MS (MSUS), alkali treated MS (AMS), alkali treated and urea supplemented MS (AMS-US), alkali $H_2O_2$ treated MS (AHMS) and alkali $H_2O_2$ treated and urea supplemented MS (AHMS-US). They were then compressed into a complete feed block with the help of block making machine. Forty two male hoggets of Malpura breed sheep were equally distributed into each treatment group and (were) offered feed and water ad libitum. At the end of 21 days of feeding trial, rumen liquor was collected through stomach tube from three animals in each group at 0 h, 4 h, 8 h, 12 h of post feeding. Results showed that the level of enzyme varied from 8.52 to 11.12, 40.85 to 50.37, 3.22 to 3.78, 2.09 to 2.77 and 31.44 to 44.24 units/100 ml SRL respectively for carboxymethyl cellulase (CMCase), $\alpha$-amylase, microcrystalline cellulase (MCCase), filter paper (FP) degrading enzyme and $\alpha$-glucosidase. Processing of MS affected the enzyme activities, in a way, that NaOH and AHP treatment significantly reduced CMCase and FP degrading enzyme. The effect of urea treatment showed an increase in the activity of MCCase and $\alpha$-glucosidase. But the supplementation of urea increased the activity of CMCase, FP degrading enzyme and $\alpha$-glucosidase. The CMCase, $\alpha$-amylase, $\alpha$-glucosidase activities were highest at 4hr whereas MCCase and FP degrading enzyme had maximum activities at 12 h post feeding Results suggested that MS might need longer time in the rumen for its effective degradation.

Partial purification and Properties of Alkaline Cellulase from Pseudomonas sp. AC-711 (Pseudomonas sp. AC-711이 생산하는 알칼리성 Cellulase의 부분정제 및 효소적 성질)

  • Yoon, Min-Ho;Lim, Sang-Ho;Choi, Woo-Young
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.1
    • /
    • pp.131-137
    • /
    • 1998
  • The cellulase components were partially purified from the culture filtrate of the alkalophilic bacterium Pseudomonas sp. AC-711 and its enzymatic properties were characterized. The specific activity of the purified major enzyme component was 3.5 units/mg protein as carboxymethyl cellulase and the yield was 23% of the total activity of the culture broth. The molecular weight of the component was 46,000 and the Km and Vmax on CMC were determined as $15.4mg\;mL^{-1}$ and $4.17{\mu}moles\;mL^{-1}\;min^{-1}$, respectively. The enzyme was stable at the temperatures below $60^{\circ}C$ and at the pH range of 4.0~11.0, and the optimal temperature and pH were $60^{\circ}C$ and pH 8.0, respectively. The enzyme activity was not significantly affected by the common surfactants (concentration: 0.05%) such as ${\alpha}$-olefin sulfonate, linear alkylbenzene sulfonate, sodium dodecyl sulfonate, hexadecyltrimethylammonium bromide and Tween 80. The enzyme was activated by the metal ions such as $Ca^{2+}$, $Cu^{2+}$, $Co^{2+}$, whereas inhibited by $Hg^{2+}$ and $Zn^{2+}$. The enzyme exhibited relatively high activity toward amorphous CMC as compared with crystalline substrates such as filter paper and avicel.

  • PDF