• Title/Summary/Keyword: Alkaline Solution

Search Result 722, Processing Time 0.024 seconds

Durability Test on E-Glass Fiber Reinforced Composites of Strand Type in Specific Environment (스트란드형 유리섬유 강화 복합재료의 특수환경에 대한 내구성 시험)

  • Lee Seong-Ryul;Kim By-An;Moon Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.52-58
    • /
    • 2006
  • The effect of various environmental conditions on the durability of E-glass fiber/vinylester resin composites have been investigated using the tensile test specimen of strand type. It was found that the durability test method performed by the stand type specimen was more convenient and reliable than other conventional test method. The weight gains increased with the immersion time in both water and alkaline solution, and the Weight gains at $50^{\circ}C$. were much bigger than those at $20^{\circ}C$ in both conditions. The tensile strength decreased with the pass of immersion time in all aqueous solution, and the tensile strength at $80^{\circ}C$ in alkaline solution decreased very steeply at beginning of immersion time. The decrement of tensile strength according to the immersion time in various environmental conditions was mainly caused by the degradation of interface and the damage of glass fiber surface.

Effects of Co-P Catalysts on Hydrogen Generation Properties from Alkaline $NaBH_4$ Solution (알칼리 $NaBH_4$ 용액의 수소발생특성에 미치는 Co-P 촉매의 영향)

  • Cho, Keun-Woo;Kwon, Hyuk-Sang
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.4
    • /
    • pp.379-385
    • /
    • 2005
  • Effects of Co and Co-P catalysts on the hydrolysis of alkaline $NaBH_4$ solution were investigated. Co and Co-P catalysts were prepared on Cu substrate by electroplating. Hydrogen generation rate of Co-P catalyst was much faster than that of Co catalyst, demonstrating that Co-P had higher intrinsic catalytic activity for the hydrolysis of $NaBH_4$ than Co. Hydrogen generation properties of Co-P catalysts largely depended on cathodic current density and electroplating time because they influenced on the P concentration of the Co-P catalysts. Maximum hydrogen generation rate of Co-P catalyst was 1066 ml/min.g-catalyst in 1 wt.% NaOH + 10 wt.% $NaBH_4$ solution at $20^{\circ}C$, which was obtained at cathodic current density of $0.01\;A/cm^2$ for 130 s.

X-Ray Diffraction Studies of Uranyl Hydrolysis Precipitates Synthesized in Neutral to Alkaline Aqueous Solutions

  • 박용준;표형렬;김원호;전관식
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.925-929
    • /
    • 1996
  • Uranyl hydrolysis precipitates were obtained by increasing pH value of aqueous uranyl solution in the range of neutral to alkaline pH value and their phase transformation during the solubility experiment under various conditions has been examined. The precipitates formed in the hydrolysis reaction of uranyl ion had a layered structure such as a meta-schoepite phase, a schoepite structure, or a mixed phase of meta-schoepite and schoepite. Phase transformation between them was strongly dependent on the pH value at which the precipitate was formed. The distance between the layers in meta-schoepite or schoepite phase was ∼7.35 Å, and it was increased with the pH value at which the precipitate was synthesized as well as the pH values of the aqueous solution. The phase transformation from a meta-schoepite to schoepite was fast for the precipitates formed at low pH values, however, it was not the case for the precipitates formed at high pH values. A small difference of pH value in aqueous solution gave a great change on its solubilities near pH 9.7, because a layered structure of the precipitates became amorphous above that pH value. Greater solubility for the precipitate formed at higher pH value can be explained from the fact that the precipitates formed at low pH value had a better crystallinity and also that the precipitates formed at higher pH value has a slower rate of crystallization.

Corrosion Performance of Al and Zn Coatings Deposited by Arc Thermal Spray Process in 3.5 wt.% NaCl-Contaminated Concrete Pore Solution (3.5wt.% NaCl로 오염된 콘크리트 기공 용액에서 아크 용사 공정에 의해 부착된 Al 및 Zn 코팅의 부식 성능)

  • Singh, Jitendra Kumar;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.59-60
    • /
    • 2023
  • The corrosion of steel rebar embedded in the coastal areas is corroding once the chloride ions ingress through the pores of the concrete. Therefore, in the present study, a 100 ㎛ thick Al and Zn coating was deposited by an arc thermal spray process onto the steel. The corrosion studies of these deposited coatings were assessed in 3.5 wt.% NaCl contaminated concrete pore (CP) solution with immersion periods. The results show that the Al coating is more corrosion resistance compared to the Zn coating attributed to the formation of gibbsite (γ-Al(OH)3) whereas Zn coating exhibits Zn(OH)2 onto the coating surface as passive layer. The Zn(OH)2 is readily soluble in an alkaline solution. Alternatively, γ-Al(OH)3 on the Al coating surface is less solubility in the alkaline pH, which further provides barrier protection against corrosion.

  • PDF

Studies on the Colorfastness to Perspiration of Knitted Blouse (편직물 Blouse의 (땀)에 대한 염색견로성에 대한 연구)

  • 이원자
    • Journal of the Korean Home Economics Association
    • /
    • v.11 no.3
    • /
    • pp.285-298
    • /
    • 1973
  • The colorfastness of dying persipiration and laundry on summer clothing must be considered, because it has special relation to the human body. The colors of fibers as cotton, p/c, acryl, polyester and nylon which have been widely used for blouse and T-Shirt of Knitted wear are R-P, Y-G, BI-B and print. Studies were carried out with persipirometer, for the natural fiber of cotton the chemical one of nylon, with additional stuff involved, which polluted. The experiment was conducted to colorfastness with acid solution and alkaline solution to see the alteration of color and staining of man-made persiperation. The results obtained from this experiment can be summerized as follows. 1. The order of color alteration isnylon < p/c < coton < polyester < acryl, and the nylon shows the lowest colorfastness, which is 3 class, and the acrly shows the highest colorfateness, which is 5 class. The staining of multifiber test of cotton fabric is nylon < p/c < polyester < cotton < acryl. The staining of multifiber of nylon fabric is nylon polyester < p/c < cotton < acryl. 2. In acid solution and alkaline solution, the alteration of color and staining makes almost no difference, but concerning staining of cotton, the acid solution is lower than the case of alteration solution only. 3. In the pollution on cotton and nylon, the latter is more easily polluted than the former regardless of fabrics. Especially in case of polluted nylon, ti shows the lowest color fastness (2 class), which causes a problem of the dying process and dye stuffs. 4. No difference of color alteration shows among them, but R-P and print show low color fastness (2 class), especially printed nylon shows the lowest value (1 class).

  • PDF

Studies on Higher Fungi in Korea (I) -Activity of Proteolytic Enzyme from Sarcodon aspratus (Berk) S. Ito- (한국산 고등균류에 관한 연구(제 1보) -능이버섯의 단백분해효소 활성-)

  • Eun, Jae-Soon;Yang, Jae-Heon;Cho, Duck-Yee;Lee, Tae-Kyu
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.3
    • /
    • pp.125-131
    • /
    • 1988
  • This study was undertaken to investigate the proteolytic enzyme from Neungee mushroom [Sarcodon aspratus (Berk) S. Ito]. The proteolytic activity of Neungee was higher than other several edible mushrooms under various pHs. The potency of proteolytic enzyme of Neungee was same as the digestive drugs containing protease. So the proteolytic activity of the enzyme was increased in neutral or weak alkaline pH, whose characteristics would be alkaline protease. The specific activity of the purified enzyme obtained by using Tris acryl CM-cellulose ion exchange increased 20 times as compared with that of the crude extract. The proteolytic enzyme was stable at room temperature, but decomposition was fast when incubated at higher temperature more than $40^{\circ}C$. The half life of the enzyme was longest in neutral pH and rate constant was increased in acidic or alkaline solution.

  • PDF

The Adhesion of Abrasive Particle during Poly-Si, TEOS and SiN CMP (Poly-Si, TEOS, SiN 막질의 CMP 공정 중의 연마입자 오염 특성 평가.)

  • Kim, Jin-Young;Hong, Yi-Kwan;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.561-562
    • /
    • 2006
  • The purpose of this study was to investigate the root cause of adhesion of silica and ceria particles during Poly-Si, TEOS, and SiN CMP process, respectively. The zeta-potentials of abrasive particles and wafers were observed negative surface charges in the alkaline solutions. SAC and STI patterned wafers have intermediate values of their composition surface's zeta potentials. The theoretical interaction force and adhesion force of silica and ceria particle were calculated in solution with acidic, neutral and alkaline pH. A stronger attractive force was calculated for silica and ceria particles on wafers in acidic solutions than in alkaline solutions. The theoretical interaction forces of the SAC and STI patterned wafers have intermediate values of their constitution wafer's values. The adhesion forces is observed lower values in alkaline solutions than in acidic solutions. And the ceria particle has lower adhesion than that of the silica particle.

  • PDF

Characteristics of Strong Alkaline Electrolyzed Water Produced in All-in-one Electrolytic Cell (일체형 전해조에서 생산된 강알카리성 전해수의 특성)

  • Lee, Ho Il;Rhee, Young Woo;Kang, Kyung Seok
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.446-450
    • /
    • 2012
  • Strong alkaline electrolyzed water which is produced in cathode by electrolyzing the solution where electrolytes (NaCl, $K_2CO_3$ etc.) are added in diaphragm electrolytic cell, is eco-friendly and has cleaning effects. So, it is viewed as a substitution of chemical cleaner. In addition, strong alkaline electrolyzed water is being used by some Japanese automobile and precision parts manufacturing industries. When strong alkaline electrolyzed water is produced by using diaphragm electrolytic cell, it is necessarily produced at the anode side. Since strong acidic electrolyzed water produced is discarded when its utilization cannot be found, production efficiency of electrolyzed water is consequently decreased. Also, there is a weakness electrolytic efficiency is decreasing due to the pollution of diaphragm. In order to overcome this, non-diaphragm all-in-one electrolytic cell integrated with electrode reaction chamber and dilution chamber was applied. Strong alkaline electrolyzed water was produced for different composition of electrolytes, and their properties and characteristics were identified. In comparing the properties between strong alkaline electrolyzed water produced in diaphragm electrolytic cell and that produced in all-in-one electrolytic cell, the differences in ORP and chlorine concentration were found. In emulsification test to confirm surface-active capability, similar results were obtained and strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell was identified to be useable as a cleaner like strong alkaline electrolyzed water produced in diaphragm electrolytic cell. Strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell is thought to have sterilizing power because it has active chlorine which is different from strong alkaline electrolyzed water produced in diaphragm electrolytic cell.

Effects of Divalent Cations on Alkaline Hydrolysis of Poly(ethylene terephthalate) Fabric (2가 양이온이 폴리에틸렌 텔레프탈레이트 직물의 알칼리 가수분해에 미치는 영향)

  • Dho, Seong Kook;Choi, Chin Hyup
    • Textile Coloration and Finishing
    • /
    • v.7 no.4
    • /
    • pp.61-73
    • /
    • 1995
  • Inorganic salts have negative or positive effects on the rates of many chemical reactions and also the rates of acidic and alkaline hydrolysis of carboxylic esters. The direction of salt effects on the hydrolysis of ester depends on the charge of esters. It is expected that the rate of the alkaline hydrolysis of Poly(ethylene terephthalte)(PET), polymeric solid carboxytic polyester with carboxyl end group at the polymer end, is also influenced by inorganic salts. In the present work, to clarify the effect of divalent cations on the alkaline hydrolysis of PET, many salts with divalent cations like $MgCl_{2},CaCl_{2},SrCl_{2},BaCl_{2},$ were added to the aqueous alkaline solutions. Then PET was hydrolyzed with aqueous NaOH solution having many salts under various conditions. Some conclusions obtained from the experimental results were summarized as follows. Many salts with various divalent cations increased or decreased the reaction rate of alkaline hydrolysis of PET depending on their electrophilicity, hydration property, ability of ion pair formation, solubility, and the degree of interactions between divalent cations and anions, etc. The hydrolysis was interrupted in the order of $Ca^{+2} and was generally accelerated in the order of $Ba^{+2}. It was inferred from the increase in ΔS$^*$and the decrease in the ΔG$^*$that the divalent cations $Sr^{+2}$ and $Ba^{+2}$attracted by PET increased the collision frequency between carbonyl carbon and $OH^{-}$ion and then accelerated the reaction rate. $Mg^{+2}$and $Ca^{+2}$decreased the reaction rate because of their strong interaction with $OH^{-}$.

  • PDF

Studies on the Production of Protease by Aspergillus oryzae KC-15 and Characteristics of the Enzymes (Aspergillus oryzae KC-15에 의한 protease의 생산 및 그 효소의 특징에 관한 연구)

  • 이미자;정만재
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.2
    • /
    • pp.77-85
    • /
    • 1980
  • This experiment was conducted to investigate the conditions for production and the characteristics of pretenses. Aspergillus oryzae KC-15, which is selected as a superior strain for the production of the protease, was used in this study. The results obtained were as follows: 1. The optimum culture time for the production of acid, neutral and alkaline protease on wheat bran medium were about 48, 48 and 72hr, respectively. The protease-produced by the strain were mainly alkaline and neutral one, but the production of acid protease was feeble extremely. 2. The addition of NaH$_2$PO$_4$, Na$_2$HPO$_4$, glucose, rice powder and Na-glutamate respectively to wheat bran media were effective for the production of alkaline and neutral protease, and the addition of (NH$_4$)$_2$HPO$_4$, glucose and rice powder respectively were effective for the production of acid protease. 3. Characteristics of professes(equation omitted) 4. As a heat resistance agent, NaH$_2$PO$_4$was the most effective one. The optimum amount of NaH$_2$PO$_4$was 10mg for alkaline and neutral protease, and 5mg for acid protease. 5. The heat resistance of the Protease by NaH$_2$PO$_4$was not recognized mostly above 6$0^{\circ}C$. 6. After the treatment of enzyme solution with 10mg of NaH$_2$PO$_4$for 30 minutes at 55$^{\circ}C$, the residual activities measured for alkaline, neutral and acid protease were 58, 57 and 55% respectively.

  • PDF