• Title/Summary/Keyword: Alkaline Pre-treatment

Search Result 72, Processing Time 0.024 seconds

High-rate Anaerobic Co-digestion of Food Waste and Sewage Sludge (음식물쓰레기와 하수슬러지의 고율 혐기성 통합소화)

  • Heo, Nam-Hyo;Chung, Sang-Soon
    • New & Renewable Energy
    • /
    • v.1 no.2 s.2
    • /
    • pp.60-72
    • /
    • 2005
  • The effect of alkaline pre-treatment on the solubilization of waste activated sludge(WAS) was investigated, and the biodegradability of WAS, pretreated WAS, [PWAS], food waste and two types of mixture were estimated by biochemical methane potential [BMP] test at $35^{\circ}C$. The biodegradability of PWAS and mixture waste were significantly improved due to the effect of alkaline hydrolysis of WAS. An alkaline pre-treatment was identified to be one of the useful pre-treatment for improving biodegradability of WAS and mixture waste. In high-rate anaerobic co-digestion system coordinate with an alkaline pre-treatment in process, the digesters were operated at the HRT of 5, 7, 10 and 13 days with a mixture of FW $50\%\;and\;PWAS\;50\%,\;$In term of $CH_4$ content, VS removal and specific methane production [SMP] which are the parameters in the performance of digester, the optimum operating condition was found to be a HRT of 7 days and a OLR of 4.20g/L-day with the highest SMP of 0.340 L $CH_4/g$ VS.

  • PDF

Sewage Sludge Treatment with Internal Recirculation and Diverse Pre-treatment Methods Using Combined Digestion Process (혼합 소화공정에서 내부반송과 다양한 전처리를 통한 하수 슬러지 처리)

  • Ha, Jeong Hyub;Choi, Suk Soon;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.613-619
    • /
    • 2018
  • In this study, various influent sludge pre-treatment methods and the internal recirculation of thickened sludge from effluents using a liquid/solid separation unit were adopted to investigate their effects on the sludge digestion and methane production in a combined mesophilic anaerobic and thermophilic aerobic sludge digestion process. A lab-scale combined sludge digestion process was operated during 5 phases using different feed sludge pre-treatment strategies. In phase 1, the feed sludge was pre-treated with a thermal-alkaline method. In contrast, in phases 2, 3 and 4, the internal recirculation of thickened sludge from the effluent and thermal-alkaline, thermal, and alkaline pre-treatment (7 days) were applied to the combined process. In phase 5, the raw sludge without any pre-treatment was used to the combined process. With the feed sludge pre-treatment and internal recirculation, the experimental results indicated that the volatile suspended solid (VSS) removal was drastically increased from phases 1 to 4. Also, the methane production rate with the thermal-alkaline pre-treatment and internal recirculation was significantly improved, showing an increment to 285 mL/L/day in phase 2. Meanwhile, the VSS removal and methane production in phase 5 were greatly decreased when the raw sludge without any pre-treatment was applied to the combined process. Considering all together, it was concluded that the combined process with the thickened sludge recirculation and thermal-alkaline pre-treatment can be successfully employed for the highly efficient sewage sludge reduction and methane gas production.

Ultrasonic and Alkaline Pre-treatments of Waste Activated Sludge for Enhancing Anaerobic Digestion (혐기성 소화를 위한 폐활성슬러지의 초음파와 알칼리 전처리)

  • Park, In Geun;Son, Han Hyung;Lee, Chae Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.53-63
    • /
    • 2018
  • The hydrolysis of organic solid waste, such as sludge, is the rate-limiting step of the anaerobic digestion. The longer rate-limiting step lead to decrease of treatment efficiency and increase hydraulic retention time and anaerobic digester. Therefore, the pre-treatment has been applied for accelerating the hydrolysis step. This study was investigated the effects of pre-treatment of waste activated sludge using ultrasonic and alkaline integrated treatment simultaneously. The results showed the cumulative methane production and the methane production rate increased while the lag phase decreased. Therefore ultrasonic and alkaline integrated pre-treatment of waste activated sludge resulted in acceleration of hydrolysis step in anaerobic digestion.

Effect of Sonification on the Ananerobic Digestion of Waste Activated Sludge(I) -Disintegration of Waste Activated Sludge Using Ultrasonic and Alkaline Pre-treatments- (초음파가 폐활성 슬러지의 혐기성 소화에 미치는 영향(I) -초음파 및 알칼리 전처리를 이용한 폐활성 슬러지의 가용화-)

  • Han, Sun-Kee;Lee, Chae-young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.96-102
    • /
    • 2009
  • The effect of ultrasonic and alkaline pre-treatments on waste activated sludge (WAS) disintegration was investigated for improved anaerobic digestion. As WAS was treated by either methods, longer capillary suction time (CST) was required due to the break-up of cell walls, and its supernatant demonstrated increase in soluble chemical oxygen demand (SCOD), protein content and turbidity. Ultrasonic process combined with alkaline pre-treatment demonstrated higher SCOD and protein content in the supernatant as compared with ultrasonic pre-treatment only. However, the degree of disintegration (DDCOD) of WAS decreased with increasing solid concentration as both WAS disintegration methods employed simultaneously.

Optimization of Thermal-alkaline Pre-treatment for Anaerobic Digestion of Flotation Scum in Food Waste Leachate Using Box-Behnken Design and Response Surface Methodology (Box-Behnken 및 반응표면 분석법을 이용한 음식물류 폐수 부상 스컴의 혐기성 소화를 위한 열-알칼리 전처리 최적화)

  • Lee, Dong-Young;Choi, Jae-Min;Kim, Jung-Kwang;Han, Sun-Kee;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.183-192
    • /
    • 2015
  • Response surface methodology (RSM) based on a Box-Behnken Design (BBD) was applied to optimize the thermal-alkaline pre-treatment operating conditions for anaerobic digestion of flotation scum in food waste leachate. Three independent variables such as thermal temperature, NaOH concentration and reaction time were evaluated. The maximum methane production of 369.2 mL $CH_4/g$ VS was estimated under the optimum conditions at $62.0^{\circ}C$, 10.1% NaOH and 35.4 min reaction time. A confirmation test of the predicted optimum conditions verified the validity of the BBD with RSM. The analysis of variance indicated that methane production was more sensitive to both NaOH concentration and thermal temperature than reaction time. Thermal-alkaline pretreatment enhanced the improvement of 40% in methane production compared to the control experiment due to the effective hydrolysis and/or solubilization of organic matters. The fractions with molecular weight cut-off of scum in food waste leachate were conducted before and after pre-treatment to estimate the behaviors of organic matters. The experiment results found that thermal-alkaline pre-treatment could reduce the organic matters more than 10kD with increase the organic matters less than 1kD.

Effects of Pulp Pre-treatment and Grinder Clearance on the Manufacturing Characteristics of Microfibrillated Cellulose (펄프의 전처리 및 그라인더 간격이 MFC 제조 특성에 미치는 영향)

  • Yong, Seong Moon;Kwak, Gun Ho;Cho, Byoung-Uk;Lee, Yong Kyu;Won, Jong Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.61-69
    • /
    • 2015
  • A number of researches have been carried out regarding the utilization of nanocellulose(crystalline nanocellulose, microfibrillated cellulose, nanofibrillated cellulose) for the manufacture of various kinds of composites and functional products. However, only few research works on the manufacturing characteristics of nanocellulose could be found, although some companies started already the production of nanocellulose in commercial scale. However, the most important thing in commercializing of production and utilization of nanocellulose is to develop the economical and efficient process. Thus, this study was carried out in order to investigate the effects of refining, alkaline pre-treatment and grinder clearance on the characteristics of microfibrillated cellulose and energy consumption. There was no significant differences in crystalline index with the degree of microfibrillation. The initial fibrillation could be improved by refining pre-treatment, but its effect was not observed anymore since the fibrillation was done up to certain level by grinding. Refining pre-treatment did not improved the energy efficiency. Alkaline pre-treatment can be helpful because the swelling of pulp fiber will facilitate fibrillation. It was found that the decrease in grinder clearance was helpful to improve the energy efficiency.

Effects of diverse Pre-treatment methods on the sludge digestion and methane production in combined mesophilic anaerobic and thermophilic aerobic sludge digestion process (다양한 전처리에 따른 중온혐기-고온호기 복합 슬러지 처리공정의 슬러지 처리효율 및 메탄 생성량 변화)

  • Ha, Jeong Hyub;Park, Jong Moon;Park, Sang Kyu;Cho, Hyun Uk;Jang, Hyun Min;Choi, Suk Soon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.43-52
    • /
    • 2013
  • In this study, various influent sludge pre-treatment methods were adopted to investigate their effects on the sludge digestion and methane production in combined mesophilic anaerobic and thermophilic aerobic sludge digestion process. A lab-scale sewage sludge digestion process was operated during 4 phases using different feed sludge pre-treatment strategies. In phase 1, feed sludge was supplied without any pre-treatment. In contrast, in phases 2, 3 and 4, thermal, thermal-alkaline and long time alkaline treatment (7 days) were applied to influent sludge, respectively. With sludge pre-treatment, TCOD removal was drastically increased from 44% to 76% from phases 1 to 4, respectively. Also, pre-treatment of feed sludge significantly improved the methane production rate of MAD, showing an increment from 101 to 165-256mL/L/day. Meanwhile, TCOD removal and methane production at phase 4 were not increased, compared to those at phase 3. Based on the experimental results, it was concluded that pre-treatment of feed sludge significantly increases the efficiency of sludge digestion and thermal-alkaline method was the most effective method among the pre-treatment methods examined.

Biological Hydrogen Production By Pre-treatment of Sugar Wastewater Using Acidic or Alkaline Chemicals (산·알칼리 전처리를 통한 제당 폐수의 생물학적 수소생산)

  • Lee, Tae-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.10-16
    • /
    • 2013
  • Characteristics of biological hydrogen production rate and organic acid under anaerobic fermentation process were investigated with sugar wastewater. Hydrogen production rate was higher with alkaline pre-treatment than acidic pre-treatment, resulting in 70% increment. An adequate supply of the nutrients (N or P) into raw sugar wastewater could increase hydrogen production rate. Carbohydrate degradation of the anaerobic fermentation process was not directly related with hydrogen production. Sugar wastewater with the addition of the nutrients shows 3 times higher B/A ratio than the raw sugar wastewater. B/A ratio of the wastewater with alkaline pre-treatment and nutrients addition was most higher than other samples, showing 4.02 of B/A ratio. Higher B/A ratio shows higher hydrogen production rate at each sample.

Disintegration of Flotation Scum in Food Wastewater Using Thermo-Alkaline Pretreatment (열-알칼리 전처리를 통한 음식물류 폐수 부상 스컴의 가용화)

  • Choi, Jae-Min;Lee, Chae-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.1
    • /
    • pp.71-78
    • /
    • 2015
  • This study was performed to optimize the integrated thermal-alkali pre-treatment of flotation scum for the enhanced biodegradability. The optimum conditions of the integrated thermal-alkali pre-treatment were obtained using response surface methodology. The disintegration degree of carbohydrate (69.2%) and protein (57.3) were estimated under the optimum conditions. Although the optimum conditions were different, the disintegration degrees were similarly. A fermentative hydrogen batch test was conducted to evaluate the hydrogen production from scum with and/or without. The maximum hydrogen production from scum with pre-treatment was of 0.64 mol H2/mol hexoseadded, which about 1.4 times higher than without pre-treatment.

Disintegration of Sewage Sludge Using Mechanical Pre-treatment (기계식 전처리를 이용한 하수슬러지의 가용화)

  • Lee, Chae-Young;Yoo, Hwang-Ryong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.82-90
    • /
    • 2009
  • Disintegration of sewage sludge (SS) was investigated by batch experiments using mechanical pre-treatment. Mechanical disintegration of SS increased the amount of soluble chemical oxygen demand (SCOD), protein and carbohydrate due to the break-up of cell walls. The mechanical disintegration incorporated with alkaline pre-treatment demonstrated higher amount of SCOD compared with mechanical one only. In terms of anaerobic biodegradability, mechanical pretreatment enhanced the anaerobic biodegradation of SS, leading to the methane production improvement. The improvement in BMP for SS treated with mechanical and alkaline-mechanical pre-treatments were 24.1% and 44.5%, respectively. This result suggested that disintegration of SS was effective for improving anaerobic biodegradability.