• Title/Summary/Keyword: Alkali-Silica Reaction (AAR)

Search Result 6, Processing Time 0.019 seconds

A Experimental Study on the Alkali-Silica Reaction of Crushed Stones (Part 1 : The Identification of Reactive Aggregate and the Influence of Aggregate Content to the Alkali-Silica Reaction) (쇄석 골재의 알칼리-실리카 반응에 관한 실험적 연구(제 1보 : 반응성골재의 판정과 골재혼입율이 알칼리-실리카 반응에 미치는 영향))

  • 윤재환;이영수;정재동;노재호;이양수;조일호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.103-107
    • /
    • 1993
  • The Alkali Aggregate Reaction(AAR), reported first by T. E. Stanton in 1940, is a reaction between certain siliceous aggregate and hydroxyl ions present in the pore fluid of a concrete. The damage of concrete structures, deteriorated by AAR, have been reported since using the crushed stones caused by the exhaustion of natural aggregates. This study was performed to investigate the AAR of crushed stones using chemical analysis, polarization microscope, XRD, chemical method(KS F 2545, ASTM C 289), mortar bar method(KS F 2546, ASTM C 227) and Scanning Electron Microscope(SEM) and Energy Dispersive X-ray Analysis (EDXA) of reaction products by AAR in mortar bar.

  • PDF

Long-term Monitoring of Expansion of Cement Concrete Pavement Affected by Alkali-Aggregate Reaction (알칼리-골재 반응에 의한 콘크리트 포장 팽창 장기 모니터링)

  • Hong, Seung-Ho;Shim, Young-Hwan
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.13-20
    • /
    • 2015
  • PURPOSES: This paper describes the expansion caused by the alkali-aggregate reaction (AAR) in concrete pavement currently in service. It also discusses the effects of joints installed to release the stress induced by the AAR expansion. METHODS: The expansion effect on concrete pavement was verified by a visual inspection and long-term measurement of the joint width of a cut-section. The behaviors of 16 newly installed joints were monitored as part of the investigation and long-term monitoring was carried out for three years after cutting. RESULTS: The behavior of a bridge was affected when AAR occurred in the connected pavement. The newly installed joints shrank in the longitudinal direction of the bridge after cutting. The width of the joints decreased over the six months after cutting. A large portion of the joint width (8.5cm) was found to have closed nine months after cutting. It had ultimately shrunk by about 92 percent when the final measurement was taken. CONCLUSIONS : The expansion of the pavement due to AAR was quantitatively described by visual inspection and the long-term monitoring of the newly cut joints. However, the width of the new joints decreased over the six to nine months after cutting. Additional research should be conducted to determine a means of controlling the expansion due to AAR in the pavement.

An Experimental Study on the Alkali-Silica Reaction of Crushed Stones (쇄석 골재의 알칼리-실리카 반응에 관한 실험적 연구)

  • 윤재환;정재동;이영수
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.2
    • /
    • pp.108-117
    • /
    • 1994
  • This study was performed to investigate the Alkali-Silica Reaction(ASR) of crushed stones using chemical analysis, polarization microscope, XRD, chemical method(KS F 2545, ASTM C 289), mortar-bar method( KS F 2546, ASTM C 227) and Scanning Electron Microscope (SEM ) and Energy Dispersive X-ray Analysis(EDXA) of reaction products by ASK in the mortar bars and to investigate the influence on alkali content and kind of added alkali to the ASR. Test results show that one kind of domestic crushed stone is estimated as deleterious by ASTM chemical method and mortar bar method, and reaction product is proved as alkali silicate gel by EDXA.

Selection of Suitable Aggregates for Long-term Stability of Concrete (콘크리트 장기 안정성을 위한 골재의 선택)

  • Yang, Dong-Yoon;Lee, Dong-Young
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 1995
  • Recently, there have been several cases of serious accidents on concrete structure resulting from rapid deterioration of concrete strength. On the view point of long term stability of concrete, deterioration of concrete strength is mostly due to chemical reaction between alkali and reactive aggregates (alkali-aggreagte reaction; AAR) in concrete rather than a problem of execution. For long-term stability of concrete, concrete aggregates must be carefully selected. Some of rocks used for concrete aggregates contain deleterious minerals reactive to alkali components in concrete. Most of AAR result from chemical reaction between alkali components and reactive silica minerals in aggregates (so called alkali-silica reaction; ASR). The silica minerals are as follows; quartz with seriously distorted lattice structure, volcanic glass, chalcedony, opal, cristobalite, tridymite, etc. ASR may cause expansion and cracks, further collapse in concrete structure, in a few years. In case of crushed aggregates, only a part of rock mass without reactive minerals must be produced in aggregates mine after thorough examination of the distribution of rocks with reactive minerals. In case of natural aggregates, the total content of reactive minerals must be calculated, if, the content is more than 20%, the rate should be lower by mixing other non-reactive crushed- or natural aggregates. If it is obliged to use concrete aggregates all containing deleterious minerals in a discrete area, they must be used with low alkali cement Even if it is low quality in the chemical properties, aggregates with suitable range in the physical properties can be utilized as the aggregate of other purposes.

  • PDF

An Experimental Study on the Alkali-Silica Reaction of Crushed Stones (Part4: The Application of the JIS Rapid Test Method to the Several Domestic Reactive Aggregates) (쇄석골재의 알칼리-실리카 반응에 관한 실험적 연구 (제4보: 국내산 반응성 골재에 JIS 신속법 적용가능성))

  • 차태환;조원기;조일호;노재호;이양수;정재동;윤재환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.447-450
    • /
    • 1994
  • The chemical method and mortar-bar method for identification of the susceptibility to Alkali-Aggregate Reaction (AAR) was established as KS method by referencing the ASTM methods. However, the chemical method requires skilled chemical engineers and aggregates are tested in very severe condition, and on the other hand, the mortar-bar method needs a long time of 3 or 6 months. Judging from this circumstance that the use of crushed stones are increased due to the shortage of natural aggregates, the development and standardization of a new rapid test method is considered essential. The purpose of this paper is to research for the possibility to apply the rapid method, instead of the chemical method and the mortar-bar method with using the several domestic crushed stones.

  • PDF

A Case Study for Deterioration due to Alkali-Silica Reaction in the Cement Concrete Pavement (알칼리-실리카 반응에 의한 시멘트 콘크리트 포장 파손 사례)

  • Hong, Seung-Ho;Han, Seung-Hwan;Yun, Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.355-360
    • /
    • 2006
  • The Alkali-Silica Reaction(ASR) may cause a serious failure in the concrete pavements and structures. Several researches in some nations have conducted the continuous studies to prevent failure of the concrete structures by the ASR distress as well as the studies to manifest the mechanism. The researches on the ASR have not been performed affluently in Korea because the distress due to ASR has seldom been reported literarily. In this study, we tried to set up the systematic scheme practically for verifying the cause of distress due to ASR by using the visual inspections in field, the chemical method, petrographic analysis, and Electron Dispersive X-ray Spectrometer(EDX) method of Scanning Electron Microscopy(SEM) in laboratory. The chemical method, petrographic method using SEM, and X-ray method were used to verify the cause of pattern crack on the surface and internal crack in the plain concrete pavement. It can be concluded that the distress of a specific site in plain concrete pavement was mainly due to ASR. The chemical method, the petrographic method and EDX method using SEM may be the effective tools for verifying the cause of AAR distresses.