• Title/Summary/Keyword: Alkali swelling

Search Result 57, Processing Time 0.208 seconds

Physicochemical Properties of Yullmoo (Coix lachryma-jobi var. mayuen stapf.) and Yeomjoo (Coix lachryma-jobi L.) Starches (율무와 염주 전분의 이화학적 특성)

  • Woo, Ja-Won;Yoon, Gae-Soon;Kim, Hyong-Soo
    • Applied Biological Chemistry
    • /
    • v.28 no.1
    • /
    • pp.19-27
    • /
    • 1985
  • The physicochemical properties of starch isolated from Yullmoo (Coix lachrymajobi var. mayuen stapf.) and Yeomjoo (Coix lachryma-jobi L.) were investigated. The average diameters of starch granules of Yullmoo and Yeomjoo were 12.0 microns, both of all, and the shape of these starch granules were hexagon, octagon and round. X-ray diffraction patterns of two samples were A-types and amylose contents of Yullmoo and Yeomjoo starch were 0% and 23%, respectively, iodine affinities of these were 0.08% and 4.2%, respectively, blue values and alkali numbers of these were 0.13 and 0.43, 2.4 and 7.2, and raising power of these were 280 and 20, respectively. Yullmoo starch had higher swelling power than Yeomjoo starch. The increase in optical transmittance of 0.1% suspensions of Yullmoo and Yeomjoo starches occurred at $60^{\circ}C$ and continued up to $75^{\circ}C$ for Yullmoo, $85^{\circ}C$ for Yeomjoo. Amylogram data on 5% of Yullmoo and Yeomjoo starch suspensions showed that gelatinization temperatures and maximum peak heights of Yullmoo and Yeomjoo were $68.5^{\circ}C\;and\;78^{\circ}C$, 920 and 310 B.U., respectiyely. Intrinsic viscosities of Yullmoo and Yeomjoo starches were 1.49 and 1.77, respectively, and interaction coefficients of the two starches were 0.57 and 0.56, respectively The extent of retrogradation determined at $2^{\circ}C$ showed that retrogradation occurred slowly with Yullmoo starch paste tut little with Yullmoo.

  • PDF

Physicochemical Properties of Cowpea Crude and Refined Starch (동부 조전분 및 정제전분의 이화학적 특성)

  • 윤혜현;이혜수
    • Korean journal of food and cookery science
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 1987
  • The purpose of this study is to investigate the physicochemcal Properties of the cowpea crude and refined starch and to present the basic data for physicochemical factor which gives the properties of Mook to cowpea starch gel. Water binding capacity of crude starch was 235. In and that of refined starch was 186.0%. The pattern of change in swelling power and solubility for increasing temperature started to increase at $60^{\circ}C$ and increased rapidly from $70^{\circ}C$, for both of crude and refined starch. The optical transmittance of 0.2% crude and refined starch suspensions were increased from $65^{\circ}C$ and showed rapid increasement during 68~$80^{\circ}C$, and their curves showed two-stage processes. The gelatinization pattern for 6n crude and refined starch suspensions were investigated by the Brabender amylograph. The corves showed the pasting temperature of $72.0^{\circ}C$ and $72.1^{\circ}C$, peak height of 11303.U. ($88.0^{\circ}C$) and 970 B.U. ($83.5^{\circ}C$) for crude and refined starch, respectively, and both showed high viscosities when cooling. Blue values for crude and refined starch were 0.369 and 0.376 respectively. Alkali number of crude and refined starch were 7.77 and 7.34, and reducing values were 3.60 and 2. 10, respectively. Amylose content of cowpea starch was 33.7%. Periodate oxidation of the starch fractions resulted that amylose had the average molecular weight of 23590, degree of polymerization of 146 and amylopectin had the degree of branching of 3.42, glucose unit per segment of 29.

  • PDF

Characterization of Mungbean (Phaseolus aureus L.) Starch (각종 전분으로 만든 교질상 식품의 특성에 관한 연구 - 녹두 전분의 이화학적 특성 -)

  • Kim, Wan-Soo;Lee, Hei-Soo;Kim, Sung-Kon
    • Applied Biological Chemistry
    • /
    • v.23 no.3
    • /
    • pp.166-172
    • /
    • 1980
  • Starch granules of mungbean observed by microscope and scanning microscope were oval or round, $8{\sim}13{\mu}$ wide, and $18{\sim}30{\mu}m$ long. X-ray diffraction of the starch granules resulted weak crystallinity at $2{\theta}\;16.9^{\circ}$ The blue value of the starch was 0.36, amylose content 22.7%, alkali number 8.52, ferricyanide number 1.06, and water binding capacity of 81.6%. Swelling of the starch was negligible until $50^{\circ}C$, thereafter it increased rapidly. Optical transmittance of 0.3% starch suspension was increased rapidly from $65^{\circ}C$ and the gelatinization at $65{\sim}90^{\circ}C$ was of single stage. Amylogram patterns of the 6.7 and 8% starch solution were similar with no peak viscosity. The time constant for retrogradation of 40% starch gel stored at $21^{\circ}C$ was 1.99 days.

  • PDF

Devulcanization of Vulcanized EPDM Rubber by a Chemical Method (화학적 방법에 의한 가황 EPDM 고무의 탈황처리)

  • Moon, Jae-Ho;Kim, Yang-Soo
    • Elastomers and Composites
    • /
    • v.35 no.4
    • /
    • pp.288-295
    • /
    • 2000
  • It has been tried to decrease the crosslink density of vulcanized EPDM (ethylone-propylene-diene terpolymer) rubber through a chemical devulcanization treatment. Phase transfer catalyst, alkali metal (i.e., sodium), and triphenylphosphine have been used as a chemical agent ul the devulcanization treatment. Also it has been estimated the effect of the devulcanization treatment in the case of utilization of 2-butanol as a devulcanization reaction solvent. In the devulcanization treatment using quaternary ammonium salt as a phase transfer catalyst. the devulcanization effect has been studied with the variation of catalyst molecular weight and the choice of bromide or chloride cation. In the devulcanization treatment using sodium, it has been estimated the devulcanization treatment effect depending upon the variation of reaction variables such as amount of sodium used, reaction temperature, pressure of hydrogen gas, which is used as a reaction environment. The $M_c$ value (number average molecular weight between two crosslink points) has been experimentally estimated by the equilibrium swelling method and it is quantitatively related to the crosslink density. The estimation of devulcanization effect for vulcanized EPDM rubber has been carried out by the comparison of the $M_c$ values between the untreated and the treated specimens.

  • PDF

Comparison of Physicochemical Prolperties of Cowpea and Mung Bean Starches (동부와 녹두전분의 이화학적 특성비교)

  • 윤계순
    • Journal of the Korean Home Economics Association
    • /
    • v.27 no.1
    • /
    • pp.39-46
    • /
    • 1989
  • Mung bean starch gel (Mook) and gel made from starch of cowpea are similar properties in texture. In order to elucidate the similarity between these two starch gels, some physicochemical properties of cowpea starch were compared with those of mung bean starch. Water bildings capacity of cowpea starch (183.6%) was a little low than that of mung bean starch (184.2%). The solobility, swelling power and optical transmitance of the cowpea starch showed a smiliar pattern to mung bean starch, but cowpea starch had a little lower solubility than mung bean starch. Amylogram of mung bean strach (4, 5, 6, 7%) shoved no peak viscosity but cowpea starch (4, 5, 6%) showed peak viscosity and both starches showed high viscosities when cooling. Cowpea and mung bean starches had the blue value of 0.41 and 0.47, the alkali number of 8.4 and 8.0, the amylose content of 30.5 and 32.1%, the molecular weight of amylose of 30,000 adn 29,258 and glucose unit per segment of amylopectin of 27.6 and 26.8 respectively. The shape of cowpea and mung bean strach granules were round and elliptical, and the mean vlalue of major axis, minor axis and the ratio of these were 20.7 and 21.8 ${\mu}{\textrm}{m}$, 14.6 and 14.4 ${\mu}{\textrm}{m}$ and 1.42 and 1.51, respectively. The extent of retrogradation determined by the glucoamylase digestion method and syneresis showed that cowpea starch gel was larger than that syneresis showed than cowpea starch gel was larger than that of mung bean starch gel. The redults of X-ray diffraction studies showed A pattern for two starches, Diffraction peak of gels disappeared with gelatinization of starches but that of two starch gels storaged for 2 days at 5$^{\circ}C$ showed a similar patterm.

  • PDF

A Comparison Study on Physicochemical Properties of Two Small Red Bean ( Black and Red ) Starches and Gels (거두와 적두전분의 이화학적 특성 및 Gel 특성에 관한 연구)

  • Chae, Seon-Hee;Sohn, Kyung-Hee
    • Korean journal of food and cookery science
    • /
    • v.6 no.2
    • /
    • pp.7-14
    • /
    • 1990
  • This study has been carried out in order to investigate the physicochemical properties of two small red bean starches. Some of rheological properties of the starch gels were also studied by experiments of various starch concentrations. Water binding capacity of black bean starch was 172.3% and that of red bean starch was 199.0%. Black bean starch had lower swelling power than red bean starch, but the solubility of the black bean starch was higher. When the temperature increased from 60$^{\circ}C$ to 70$^{\circ}C$, the transmittance of two starches rapidly increased. The gelatinized temperature in DSC for black bean was 66.2$^{\circ}C$ and that for red bean was 66.0$^{\circ}C$. Black bean and red bean starches had the blue vlaues of 0.55 and 0.56 and the alkali numbers of 4.40 and 4.13. The molecular weight of amylose was 40,000 and 33,611. The amylose contents of two starches were same at 52%. Brabender Amylographs of two small red bean starch pastes showed C pattern, which is stable. The results of compression test pointed out that TPA parameters varied with the change of storage time, and black bean starch gels had the higher TPA value. The retrogradation study by glucoamylase digestion method revealed that red bean starch gels were more easily retrogradated than black bean. X-ray diffraction patterns of two small red bean starches were A pattern, and diffraction peaks disappeared with gelatinization of starches.

  • PDF

A Study on the Physicochemical Properties of Buckwheat Starches (메밀 전분의 이화학적 특성에 관한 연구)

  • Lee, Mi-Sook;Sohn, Kyung-Hee
    • Korean journal of food and cookery science
    • /
    • v.8 no.3
    • /
    • pp.291-296
    • /
    • 1992
  • The physicochernical properties of Korean buckwheat starches were investigated. The results were as follows; 1. Water binding capacity of kangwon hull buckwheat starch was 106.55% and that of Kangwon rice buckwheat was 99.35%. 2. The pattern of change in swelling power of hull buckwheat starch for increasing temperature started to increase at 60$^{\circ}C$ and increased rapidly from 80$^{\circ}C$, and that of rice buckwheat increased slowly from 60$^{\circ}C$ to 90$^{\circ}C$. 3. The ranges of gelatinization temp. of hull buckwheat and rice buckwheat starches were 70~75$^{\circ}C$ and 75~85$^{\circ}C$, respectively. 4. The blue value of hull buckwheat starch and rice buckwheat starch were 6.25 and 0.62, respectively. 5. The alkali number of hull buckwheat starch and rice buckwheat starch were 1.28 and 3.68 respectively. 6. The amylose content of hull buckwheat and rice buckwheat starch were 32.26% and 38.09%. 7. Periodate oxidation of hull buckwheat starch resulted that amylose had me average molecular weight of 103, 004, degree of polymerizatlon of 572 and amylopectin had me degree of branching of 7.64, glucose unit per segment of 13.09, and periodate oxidation of rice buck wheat starch resulted mat amylose had me average molecular weight of 125, 654, degree of polymerization of 698 and amylopectin had degree of branching of 6.59, glucose unit per segment of 15.16.

  • PDF

Comparison of Physicochemical Properties of Arrowroot Starches Harvested in Different Time (채취 시기별 칡 전분의 성질 비교)

  • Park, Jong-Hoon;Na, Hwan-Sik;Kang, Kil-Jin;Kim, Kwan;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.97-102
    • /
    • 1998
  • Arrowroot starches, harvested in March, June, September and December, indicated that the December starch had the lower values of amylose content, ${\beta}-amylolysis$ limit and intrinsic viscosity, but the highest value of water-binding capacity. The swelling power were similar among different starches. The gelatinization by KSCN revealed that the December starch was the most resistant to alkali gelatinization. Gelatinization temperature, determined by differential scanning calorimetry, of the December sample was shifted to higher temperture by $1^{\circ}C$ compared with the others. When the December starch was heated at $98^{\circ}C$ for 8min, 93.8% of total amylose and 7.2% of total amylopectin were solubilized, which was the highest and the lowest, respectively.

  • PDF

Physicochemical Properties of the Durian Seed Starch (Durian 종자 전분의 이화학적 특성)

  • Lee, Seong-Gap;Kim, Hyeong-Su;Son, Jong-Youn
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1410-1414
    • /
    • 1999
  • The granular size and shape of durian seed starch were $2.0-10.0\;{\mu}m$ and oval and polygonal. Amylose contents of durian seed, corn, sweet potato and potato starch were 28.3%, 27.5%, 20.3% and 21.7%, respectively. Blue value of durian seed (0.370) higher than that of corn (0.368), sweet potato (0.332), and potato starch (0.338). Alkali numbers of durian seed, corn, sweet potato and potato starch were 7.39, 9.02, 7.08 and 5.43, respectively. Swelling power of durian seed starch was similar to that of sweet potato starch. X-ray diffraction patterns of durian seed starch showed an A-type crystalline structure. According to pasting properties by Rapid Visco-Analyzer, the gelatinization temperature of durian seed starch $(76.6^{circ}C)$ was higher than that of corn $(73.0^{circ}C)$, sweet potato $(72.3^{circ}C)$ and potato starch $(70.2^{circ}C)$. The breakdown of durian seed starch were lower than that of corn, sweet potato and potato starch.

  • PDF

Physicochemical Properties of Several Sweet Potato Starches (품종별 고구마 전분의 이화학적 특성)

  • Seog, Ho-Moon;Park, Yong-Kon;Nam, Young-Jung;Shin, Dong-Hwa;Kim, Jun-Pyong
    • Applied Biological Chemistry
    • /
    • v.30 no.2
    • /
    • pp.179-185
    • /
    • 1987
  • The physicochemical properties and characteristics of sweet potato starches which were isolated from the six varieties were investigated. The shapes of starch granules which observed through photomicroscope and scanning electron microscope lucre round and polygonal, but those of the Shinmi were most polygonal, and the average diameters were in the range of $10.4{\sim}14.2$ microns. The amylose contents were between 25% and 28%, and blue values and alkali numbers were in the range of $0.29{\sim}0.36$, $7.0{\sim}12$, respectively. The swelling power and solubility patterns of the starches were negligible until $50^{\circ}C$, thereafter it increased rapidly and the Eunmi showed highest water binding capacity of 211.6%. Amylogram pattern of 6% starch solutions were similar to no peak viscosity, but maximum viscosity varied widely with varieties. A significant positive correlation was observed between amylose content and average gelatinization temperature. Taste and texture of the steam cooked sweet potatoes were negatively and positively correlated with moisture and amylose contents, respectively, while those of the microwave cooked sweet potatoes were only positively correlated with amylose contents.

  • PDF