• Title/Summary/Keyword: Alkali metal ion

Search Result 145, Processing Time 0.023 seconds

Ab Initio Study of Vibrational Spectra of p-tert-Butylcalix[4]aryl Ester Complexed with Alkali Metal Cation (알칼리금속 양이온과 착물을 형성한 캘릭스[4]아릴에스터의 진동스펙트럼에 대한 순수양자역학적 연구)

  • Choe, Jong-In;Kim, Gwang-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.7-13
    • /
    • 2006
  • infrared(IR) absorption spectra were calculated for the ethyl ester of p-tert-butylcalix[4]arene (1) in the cone conformer and its alkali-metal-ion complex. The vibrational spectra were obtained by restricted Hartree-Fock (RHF) calculations with the 6-31G basis set. The characteristic vibrational frequencies of various C-O and C=O stretching motions of the complexes show that the structure of 1+K+ complex is almost of C4v symmetry compared to 1+Na+ (C2v) analogue. The theoretical results for the host molecule 1 and complex (1+Na+) were compared with the experimental results, and the calculated vibrational frequencies agree well with the features of the experimental spectra.

A Study on the Synthesis of Carboxymethyl Chitin and Separation of Alkali-Earth Metal ions by Adsorption (Carboxymethyl Chitin의 합성 및 알칼리 토금속 이온의 흡착분리에 관한 연구)

  • Choi, Kyu-Suk;Chang, Byung-Kwon;Kim, Chong-Hee;Kim, Yong-Moon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.3
    • /
    • pp.270-278
    • /
    • 1991
  • Carboxymethyl chitin(CM-chitin) was prepared by the reaction of alkali chitin with monochloroacetic acid in isopropyl alcohol. According to the pH variation, the adsorptivity of this chelating polymer to the alkali-earth metal ions such as $Ca^{2+},\;Mg^{2+}$, $Sr^{2+}$, $Ba^{2+}$ ions was determined by batch method. The adsorption tendency of this chelating polymer to most metal ions was increased with the increase of pH. The highest degree of adsorption was observed toward $Ca^{2+}$ ion among the alkali-earth metal ions. The selectivity adsorption property toward $Ca^{2+}$ ion was examined in the solution of $Ca^{2+}$ and $Mg^{2+}$ ions, and it was observed that CM-chitin showed excellent selectivity to $Ca^{2+}$ ion than $Mg^{2+}$ ion. $Mg^{2+}$ ion bound to CM-chitin molecule in the presence of $Ca^{2+}$ ion owing to low equilibrium constant. In the adsorption experiment of $Ca^{2+}$ and $Mg^{2+}$ ions to the CM-chitin under coexistence of $Na^+$ and $K^+$ ions, it observed that adsorptivity of only $Ca^{2+}$ ions was not affected by these monovalent cations.

  • PDF

Removal of Alkali Metal Ion using Inorganic Ion Exchanger (무기이온교환제를 이용한 알카리 금속이온 제거)

  • Ha, Ji-Won;Yi, Kwang Bok;Lee, Si Hyun;Rhee, Young-Woo;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.423-429
    • /
    • 2008
  • Currently, Ash-free clean coal producing process by solvent extraction is under development. The produced ash-free clean coal can be directly combusted in a gas turbine which results in substantial improvement of power generation efficiency. However, the clean coal produced by the solvent extraction still contain trace amount of alkali metal which may cause corrosion on turbine blades during the direct combustion. In present work ${\alpha},{\beta}$-metal (Zr and Ti) phosphates and H-Y zeolite were synthesized and their ion exchange characterizations were investigated for the application on alkali metal removal for clean coal production. $Na^+$ ion removal capacities of the metal phosphates and H-Y zeolite were measured and compared in both aqueous solution (100 ppmw, $Na^+$) and coal dissolved N-methyl-2-pyrrolidone (NMP, 12 ppmw $Na^+$) at elevated temperature. In aqueous solution, the ${\beta}$ form metal phosphates showed very high ion exchange capacities compared to ${\alpha}$ form. ${\beta}$ form metal phosphates also showed higher $Na^+$ removal capacities than H-Y zeolite. In ion exchange medium of NMP, all the ${\alpha}$ form metal phosphates showed over 90% of $Na^+$ ion removal efficiency in the temperature range of 200 to 400 while that of H-Y zeolite decreased as a half when the temperature was over 350. In addition, the regenerated metal phosphates by acid treatment showed no sign of degradation in $Na^+$ removal efficiency. Among the metal phosphates used, $Zr_{0.75}Ti_{0.25}(HPO_4)_2$ showed the best performance in $Na^+$ removal and is expected to be the most suitable inorganic ion exchanger for the alkali metal removal process.

Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl

  • Um, Ik-Hwan;Kang, Ji-Sun;Kim, Chae-Won;Lee, Jae-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.519-523
    • /
    • 2012
  • A kinetic study is reported on nucleophilic displacement reactions of benzyl 2-pyridyl carbonate 6 with alkalimetal ethoxides, EtOM (M = Li, Na, and K), in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of pseudo-firstorder rate constant $k_{obsd}$ vs. [EtOM] curve upward, a typical phenomenon reported previously for alkaline ethanolysis of esters in which alkali-metal ions behave as a Lewis-acid catalyst. The kobsd value for the reaction of 6 with a fixed EtOK concentration decreases rapidly upon addition of 18-crown-6-ether (18C6), a complexing agent for $K^+$ ion up to [18C6]/[EtOK] = 1.0 and then remains constant thereafter, indicating that the catalytic effect exerted by K+ ion disappears in the presence of excess 18C6. The reactivity of EtOM towards 6 increases in the order $EtO^-$ < EtOLi < EtONa < EtOK, which is contrasting to the reactivity order reported for the corresponding reactions of 2-pyridyl benzoate 4, i.e., $EtO^-$ < EtOK < EtONa < EtOLi. Besides, 6 is 1.7 and 3.5 times more reactive than 4 towards dissociated $EtO^-$ and ion-paired EtOK, respectively. The reactivity difference and the contrasting metal-ion selectivity are discussed in terms of electronic effects and transition-state structures.

Theoretical Studies on MXO4 (M=Li, Na, K and X=F, Cl, Br, I) Salt Ion Pairs

  • Rashid, Mohammad Harun Or;Ghosh, Manik Kumer;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2215-2218
    • /
    • 2010
  • The series of alkali metal perhalogenates, $MXO_4$ (M=Li, Na, K and X=F, Cl, Br, I) were theoretically studied with the help of MP2 methods. Bidentate as well as tridentate structures were found to be stable minima. The bidentate structures are becoming preferred as the size of halogen increases and as the size of metal decreases. Geometrically, the M-O and M-X distances of both bidentate and tridentate structures, increase with the size of metal. Generally, the M-$O_1$ distances of tridentate forms are longer than the corresponding distances of bidentate forms, while the M-X distances of tridentate forms show the opposite trend. Similarly, the X-O bonds increase with the size of halogens except $MXO_4$ pairs, where the X-O bonds are unusually long due to the enhanced oxygen-oxygen repulsions. In short, the relative energetics as well as the geometrical parameters are found to be strongly dependent on halogen and metal elements.

Ionic-to-Metallic Layer Transition in Cs Adsorption on Si(111)-(7$\times$7). Charge-State Selective Detection of Adsorbate by Cs+ Reactive Ion Scattering.

  • Han, Seung-Jin;Park, Sung-Chan;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.155-155
    • /
    • 2000
  • Adsorption of alkali metals on a silicon surface has attracted much attention due to its importance in metal-semiconductor interface technology, In particular, the bonding nature of alkali metal to silicon substrate has been a focus of fundamental research efforts. We examined the adsorbed layer of Cs on a Si(111)-(7$\times$) surface by reactive ion scattering (RIS) of hyperthermal Cs+ beams. RIS from a Cs-adsorbed surface gives rise to Cs, representing pickup of surface Cs by Cs projectile. The Cs intensity is proportional to surface coverage of Cs at a high substrate temperature (473 K), while it varies anomalously with Cs coverage at low temperatures (130-170 K). This observation indicates that RIS selectively detects metallic Cs on surface, but discriminates ionic Cs. Transition from ionic to metallic Cs adlayer is driven by thermal diffusion of Cs and their clustering process.

  • PDF

Property about Extraction of Metal Ion in the Synthesized Crown Ether Model Compounds (합성한 crown ether 모델 화합물에서 금속이온의 추출 특성 연구)

  • Lee, Yong-Hee;Suh, Myung-Gyo;Roh, Jong-Su;Lee, Kook-Eui;Lee, Young-Sei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.165-169
    • /
    • 2003
  • To extract alkali metal ions and heavy metal ions, search for crown ether model compounds (4a-b, 5a-b, 6a-b) bearing side arm has led to achieve in 5~6 steps starting from 2,6-dimethylaniline. The determination of structure in their compound derivatives were on the basis of melting point and nuclear magnetic resonance spectroscopy. In the solvent extraction of metal ions from the synthesized derivatives, we observed that silver ion has only high selectivity for synergistic ligation of crown ether.

  • PDF

Sodium Ion-Selective Membrane Electrode Based on Dibenzopyridino-18-Crown-6

  • Tavakkoli, Nahid
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1474-1476
    • /
    • 2004
  • A sodium ion- selective electrode based on dibenzopyridino-18-crown-6 as membrane carrier was successfully prepared. The electrode exhibits a Nernstian response for $Na^+$ ions within the concentration range of $1.0\;{\times}\;10^{-4}-1.0\;{\times}\;10^{-1}$ M. The response time of the sensor is 20 s. The sodium ion-selective electrode exhibited comparatively good selectivities with respect to alkali, alkaline earth and some transition metal ions.

Voltammetric Studies of Diazocalix[4]crown-6 for Metal Ion Sensing

  • Dong, Yun-Yan;Kim, Tae-Hyun;Lee, Chang-Seuk;Kim, Hyun-Jung;Lee, Jae-Hong;Lee, Joung-Hae;Kim, Ha-Suck;Kim, Jong-Seung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3549-3552
    • /
    • 2010
  • The complex formation between diazocalix[4]dipropyl (1) and diazocalix[4]crown-6 ether (2) with alkali, alkaline earth and transition metal ions was investigated by voltammetry. Electrochemical properties of compounds 1 and 2 and their selectivity toward metal ions were evaluated in $CH_3CN$ solution by comparison of voltammetric behaviors of two phenols in each compound. Compounds 1 and 2 showed almost same voltammetric behavior which is two irreversible oxidation peaks caused by intramolecular hydrogen bonding between two phenols in 1 and 2. While, however, upon interacting with various metal ions, 1 with two propyl ether groups showed no significant changes in voltammetry, 2 with crown ether group caused significant voltammetric changes upon the addition of $Ba^{2+}$ to 2. Their behavior is closely related to the complex formation by entrapment of metal ion into crown ether cavity, and ion-dipole interaction between metal ion and two phenolic groups in calix[4]crown-6.