• Title/Summary/Keyword: Alkali metal

Search Result 405, Processing Time 0.038 seconds

Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl

  • Um, Ik-Hwan;Kang, Ji-Sun;Kim, Chae-Won;Lee, Jae-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.519-523
    • /
    • 2012
  • A kinetic study is reported on nucleophilic displacement reactions of benzyl 2-pyridyl carbonate 6 with alkalimetal ethoxides, EtOM (M = Li, Na, and K), in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of pseudo-firstorder rate constant $k_{obsd}$ vs. [EtOM] curve upward, a typical phenomenon reported previously for alkaline ethanolysis of esters in which alkali-metal ions behave as a Lewis-acid catalyst. The kobsd value for the reaction of 6 with a fixed EtOK concentration decreases rapidly upon addition of 18-crown-6-ether (18C6), a complexing agent for $K^+$ ion up to [18C6]/[EtOK] = 1.0 and then remains constant thereafter, indicating that the catalytic effect exerted by K+ ion disappears in the presence of excess 18C6. The reactivity of EtOM towards 6 increases in the order $EtO^-$ < EtOLi < EtONa < EtOK, which is contrasting to the reactivity order reported for the corresponding reactions of 2-pyridyl benzoate 4, i.e., $EtO^-$ < EtOK < EtONa < EtOLi. Besides, 6 is 1.7 and 3.5 times more reactive than 4 towards dissociated $EtO^-$ and ion-paired EtOK, respectively. The reactivity difference and the contrasting metal-ion selectivity are discussed in terms of electronic effects and transition-state structures.

Metal Ion Catalysis in Nucleophilic Substitution Reaction of 4-Nitrophenyl Picolinate with Alkali Metal Ethoxides in Anhydrous Ethanol

  • Hong, Yeon-Ju;Kim, Song-I;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2483-2487
    • /
    • 2010
  • Pseudo-first-order rate constants ($k_{obsd}$) were measured spectrophotometrically for nucleophilic substitution reactions of 4-nitrophenyl picolinate (6) with alkali metal ethoxides (EtOM, $M^+\;=\;K^+$, $Na^+$ and $Li^+$) in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plot of $k_{obsd}$ vs. [EtOM] exhibits upward curvature regardless of the nature of $M^+$ ions. However, the plot for the reaction of 6 with EtOK is linear with significantly decreased $k_{obsd}$ values when 18-crown-6-ether (18C6, a complexing agent for $K^+$ ion) is added in the reaction medium. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ (i.e., the second-order rate constant for the reaction with dissociated $EtO^-$ and ion-paired EtOM, respectively) has revealed that ion-paired EtOM is 3~17 times more reactive than dissociated $EtO^-$. The reaction has been proposed to proceed through a 5-membered cyclic transition state, in which $M^+$ ion increases the electrophilicity of the reaction site. Interestingly, $Na^+$ ion exhibits the largest catalytic effect. The presence of a nitrogen atom in the pyridine moiety of 6 has been suggested to be responsible for the high $Na^+$ ion selectivity.

Study on the Metal Ore Deposits of Gyeongsang buk-do Area (경상북도(慶尙北道) 일원(一圓)에 부존(賦存)하고 있는 금속지하자원(金屬地下資源)의 지질광상학적(地質鑛床學的) 연구(硏究))

  • Kim, Y.K.;Lee, J.Y.;Kim, S.W.;Koh, I.S.
    • Economic and Environmental Geology
    • /
    • v.9 no.3
    • /
    • pp.143-156
    • /
    • 1976
  • The Cretaceous metal ore deposits in the Gyeongsang basin of Gyeongsangbuk-do are characterized by the formation of metallogenic provinces which show zonal distribution pattern around Yeonil province where pneumatolytic type is dominated and hydrothermal type are distributed in the order of decreasing temperature type outward. Some Cretaceous granitic rocks include zoned alkali feldspars which reflect rapid variation of $H_2O$ during emplacement and crystallization of the water-saturated granitic magma. The ore deposits are considered to be originated from upward transportation of ore solution from the excess of water exhausted from uprising magma, which seems to be intimately related to the fact that the majority of the ore deposits in Daegu area are cummulated around the granites including zoned alkali feldspars. In order to collect geochemical data necessary for geochemical exploration in the study area, certain trace elements were chosen as pathfinders from monzonite and soil in the vicinity of Dalsung Tungsten Mine by studying the dispersion patterns of trace elements: Ba and Sr show trends to decrease toward ore deposit while Cu, Pb, and Mo increase. Around mining area there are distributed apparently Equisetum arvense Linne and Mentha sachinensis Kudo which may be used as index plants. In the viewpoint of geologic structure, the trends of the ore veins in contact aureole around the Palgongsan granite body correspond with the pre- and syn- plutonism joint pattern in hornfels in the area.

  • PDF

Effect of Crown Ring Size and Upper Moiety on the Extraction of s-Block Metals by Ionizable Calixcrown Nano-baskets

  • Mokhtari, Bahram;Pourabdollah, Kobra
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.11
    • /
    • pp.3979-3990
    • /
    • 2011
  • Eight ionizable nano-baskets of cone 25,26-di(carboxymethoxy)calix[4]arene-crown-3,4,5,6 were synthesized and were verified by $^1H$ and $^{13}C$ NMR spectroscopy, IR spectroscopy and elemental analysis. The competitive solvent extractions of alkali and alkaline earth metal cations were studied using such nano-baskets. The novelty of this study is including three binding units of calixarene's bowl, crown ether's ring and electron-donor ionizable moieties in a unique scaffold to assess the binding tendency towards the cations. The objective of this work is to study the extraction efficiency, selectivity and $pH_{1/2}$ of such complexes. The result of solvent extraction experiments indicated that these compounds were effective extractants of alkali and alkaline earth metal cations. Their selectivities were greatly influenced by the acidity of solution and the conformations of the calixcrown. One conformer was selective to $Na^+$ in pH ${\geq}$ 4, while the other was highly selective to $Ba^{2+}$ in pH 6 and upper.

Synthesis of New Triazacrown Ion Exchanger and Its Ion Exchange Characteristics (새로운 트리아자크라운 이온교환체의 합성과 그의 이온교환 특성)

  • Kim, Dong Won;Chung, Yong Soon;Kim, Chang Suk;Choi, Ki Young;Lee, Yong Ill;Hong, Choon Pyo
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.371-378
    • /
    • 1995
  • The triazacrown compound, 1,7-dioxa-4,10,13-triazacyclopentadecane trihydrobromide salt (Na3O2-3HBr) was synthesized. And this compound was used to synthesize the new ion exchanger, which combined with Merrifield peptide resin. This new ion exchanger had a capacity of 3.2 meq/g dry resin. And the distribution coefficients of alkali and alkaline earth metal ions on this ion exchanger in the various concentrations of hydrochloric acid were determined. The ion exchange behaviors of alkali and alkaline earth metal ions in the various hydrochloric acid concentrations are, also, discussed.

  • PDF