• Title/Summary/Keyword: Alkali metal

Search Result 405, Processing Time 0.03 seconds

Removal of Alkali Metal Ion using Inorganic Ion Exchanger (무기이온교환제를 이용한 알카리 금속이온 제거)

  • Ha, Ji-Won;Yi, Kwang Bok;Lee, Si Hyun;Rhee, Young-Woo;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.423-429
    • /
    • 2008
  • Currently, Ash-free clean coal producing process by solvent extraction is under development. The produced ash-free clean coal can be directly combusted in a gas turbine which results in substantial improvement of power generation efficiency. However, the clean coal produced by the solvent extraction still contain trace amount of alkali metal which may cause corrosion on turbine blades during the direct combustion. In present work ${\alpha},{\beta}$-metal (Zr and Ti) phosphates and H-Y zeolite were synthesized and their ion exchange characterizations were investigated for the application on alkali metal removal for clean coal production. $Na^+$ ion removal capacities of the metal phosphates and H-Y zeolite were measured and compared in both aqueous solution (100 ppmw, $Na^+$) and coal dissolved N-methyl-2-pyrrolidone (NMP, 12 ppmw $Na^+$) at elevated temperature. In aqueous solution, the ${\beta}$ form metal phosphates showed very high ion exchange capacities compared to ${\alpha}$ form. ${\beta}$ form metal phosphates also showed higher $Na^+$ removal capacities than H-Y zeolite. In ion exchange medium of NMP, all the ${\alpha}$ form metal phosphates showed over 90% of $Na^+$ ion removal efficiency in the temperature range of 200 to 400 while that of H-Y zeolite decreased as a half when the temperature was over 350. In addition, the regenerated metal phosphates by acid treatment showed no sign of degradation in $Na^+$ removal efficiency. Among the metal phosphates used, $Zr_{0.75}Ti_{0.25}(HPO_4)_2$ showed the best performance in $Na^+$ removal and is expected to be the most suitable inorganic ion exchanger for the alkali metal removal process.

Improved methods for the preparation of $(Y_{1-x}Eu_x)_2O_3$:MX and $(Y_{1-x-y}Gd_xEu_y)_2O_3$:MX as red phosphor materials

  • Lee, You-Hui;Han, Sang-Do;Kim, Jung-Duk;Chang, Mi-Yeon;Singh, Ishwar.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.715-718
    • /
    • 2004
  • Substantially improved methods for the preparation of europium-doped yttrium oxide red phosphor with the inclusion of alkali metal halides having a general formula $(Y_{1-x}Eu_x)_2O_3$:MX where 0.025${\leq}$x${\leq}$0.2 and MX is alkali halide in the mole ratio 0.025 to 0.6, more preferably between 0.05 to 0.2 mole, are reported. Another series of the red phosphor materials with general formula $(Y_{1-x-y}Gd_xEu_y)_2O_3$:MX where 0.05${\leq}$x${\leq}$0.40 and 0.025${\leq}$y${\leq}$0.20 and MX is alkali halide in the mole ratio 0.025 to 0.5, more preferably between 0.1 to 0.2 mole, has also been presented. The inclusion of alkali halide greatly increase the luminance of the materials. The materials are very soft with fine particle size less than 100nm. The phosphorescent materials have good luminance in VUV region.

  • PDF

Surface Treatment Technology for Metal Corrosion Layer Focusing on Copper Alloy

  • Yang, Eun-Hee;Han, Won-Sik;Choi, Kwang-Sun;Lee, Young-Hoon;Ham, Chul-Hee;Hong, Tae-Kee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.176-182
    • /
    • 2014
  • Using alkali treatment solution, neutrality treatment solution and acid treatment solution, the surface corrosion layer of copper plates and bronze plates that have been artificially corroded using HCl, $H_2SO_4$ and $HNO_3$ solutions were removed. In the case of alkali treatment solution, only air oxidation in the form of black tenorite and white cuproous chloride remained without being removed. In the case of using a neutrality treatment solution, a anhydrous type layer of reddish brown cupric chloride remained without being removed, together with this black and white corrosion substance. In the case of using an acid treatment solution, this red corrosion substance also remained, but all of the oxide was removed on the surface of the specimen that was treated by alternatively using alkali treatment solution and acid treatment solution. In the case of this treatment solution with the order of alkali-acid, oxidation no longer proceeded only through the distilled water cleaning process after treatment, thereby showing that oxidation from the cleaning solution no longer proceeded.

Deposition of Alkali Metal Ions at Polypyrrole Film Electrodes Modified with Fullerene (플러렌으로 수식된 피를 고분자 피막전극에 알카리 금속이온의 포집)

  • Cha Seong-Keuck;Lee Sangchun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.16-20
    • /
    • 2004
  • To electropolymerize Polypyrrole(ppy) film modified with fullerene $ions(full^-)$ the cell, Au/5 mM pyrrole, 1mM fullerene, 0.1M $TBABF_4,\;CH_2Cl_2/Pt$, was employed to Prepare the wafer-like type of $electrode/ppy(full^-)ppy(full^-){\ldots}$ electrodes. They were applied to deposit alkali metal ions with the cell of Au(quartz crystal analyzer; QCA)/ppy$(full^-)$, 0.01M metal ion(aq.)/Pt. The depositing rate constant of each ion for $Li^+,\;Na^+,\;K^+,\;Rb^+\;and\;Cs^+$, determined from the first order equation was $1.60\times10^{-8},\;3.13\times10^{-11},\;1.38\times10^{-9},\;2.71\times10^{-11}\;and\;2.98\times10^{-12}mo1.s^{-1}$ respectively. The calculated stoichiometry of the ions determined by quartz crystal microbalance(QCM) at the electrodes was $Li_7C_{60},\;Na_4C_{60},\;K_3C_{60},\;Rb_1C_{60}\;and\;Cs_1C_{60}$ respectively.

Microstructural Effects on Hydrogen Delayed Fracture of 600MPa and 800MPa grade Deposited Weld Metal (600MPa급과 800MPa급 전용착금속의 미세조직에 따른 수소지연파괴 거동)

  • Kang, Hee Jae;Lee, Tae Woo;Yoon, Byung Hyun;Park, Seo Jeong;Chang, Woong Seong;Cho, Kyung Mox;Kang, Namhyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.52-58
    • /
    • 2012
  • Hydrogen-delayed fracture (HDF) was analyzed from the deposited weld metals of 600-MPa and 800-MPa flux-cored arc (FCA) welding wires, and then from the diffusible hydrogen behavior of the weld zone. Two types of deposited weld metal, that is, rutile weld metal and alkali weld metal, were used for each strength level. Constant loading test (CLT) and thermal desorption spectrometry (TDS) analysis were conducted on the hydrogen pre-charged specimens electrochemically for 72 h. The effects of microstructures such as acicular ferrite, grain-boundary ferrite, and low-temperature-transformation phase on the time-to-failure and amount of diffusible hydrogen were analyzed. The fracture time for hydrogen-purged specimens in the constant loading tests decreased as the grain size of acicular ferrite decreased. The major trapping site for diffusible hydrogen was the grain boundary, as determined by calculating the activation energies for hydrogen detrapping. As the strength was increased and alkali weld metal was used, the resistance to HDF decreased.

Tungsten Recovery from Tungsten Carbide by Alkali Melt followed by Water Leaching (알칼리 용융 및 수 침출을 이용한 탄화텅스텐으로부터 텅스텐 회수)

  • Kim, Byoungjin;Kim, Suyun;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.91-96
    • /
    • 2017
  • Tungsten (W) recovery from tungsten carbide (WC) was researched by alkali melt followed by water leaching. The experiments of alkali melt were carried out with the change of the sort of alkali material, heating temperature, and the heating duration. Water leaching of W was performed in the fixed conditions ($25^{\circ}C$, 2 hr., slurry density: 10 g/L). From the mixture of WC and sodium nitrate ($NaNO_3$) in the molar ratio of 1:2, treated at $400^{\circ}C$ for 6 hours, only 63.3% of W might be leached by water leaching. With the increase of sodium hydroxide (NaOH) as a melting additive, the leachability increased. Finally it reached to 97.8 % with the melted mixture of ($WC:NaNO_3:NaOH$) in the ratio of (1:2:2). This imply that NaOH may play a role as a reaction catalyst by lowering Gibb's free energy for alkali melt reaction for WC.

Recovery of Gallium from Zinc Smelting Residues by Alkali Leaching (아연제련잔사의 알칼리 침출에 의한 갈륨의 회수)

  • 김성규;이화영;오종기
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.22-28
    • /
    • 2000
  • A study on the recovery of gallium from zinc residues is carried out by alkali leaching using NaOH. The results show that in case of alkali leaching of zinc residues, Zn, K and Si are mainly leached out and Fe and other base metals are scarcely leached out, which results in that gallium is easily recovered by solvent extraction. The leaching efficiency of gallium increases with increasing alkali concentration and solid density. Especially, alkali consumption is considerably reduced by washing the zinc residues with water before leaching in order to eleminate the soluble zinc compounds. The gallium from zinc residues is found to be leached out with a recovery of 80% or higher for 2hrs leaching with 1~1.25 M/L NaOH solution and solid density 333 g/L at $25^{\circ}C$.

  • PDF

Calix[6]arene Bearing Carboxylic Acid and Amide Groups in Polymeric CTA Membrane

  • Kim, Jong-Seung;Lee, Soo-Heon;Yu, Sang-Hyeok;Cho, Moon-Hwan;Kim, Dong-Won;Kwon, Seon-Gil;Lee, Eil-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1085-1088
    • /
    • 2002
  • Calix[6]arene having both carboxylic acid (1,3,5-) and carboxamide (2,4,6-) in an alternative way was synthesized. Transport rates of alkali and alkaline-earth metal ions were tested in bulk liquid membrane and polymer inclusion membrane. Ba2+ ion was found to give the highest transport rate among tested metal ions in both BLM and PIM systems. In PIM system, high durability (longer than 30 days) of the membrane was observed.

Influence of Anoxic Selectors on Heavy Metal Removal by Activated Sludge

  • Niec, Jay H.;Cha, Daniel K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.431-435
    • /
    • 2000
  • The goal of this research is to compare the metal binding characteristics of an anoxic selector activated sludge system and a conventional activated sludge system. Metal biosorption by biomass harvested from experimental systems was determined by a series of batch experiments. Heavy metals studied in this research were zinc, cadmium, and nickel. The sorption isotherm showed that the selector sludge had significantly higher sorption capacity than did the control sludge. Metal biosorption behavior closely followed a Freundlich isotherm model for equilibrium concentrations. ECP contents of biomass estimated by alkali extraction technique showed that ECP levels in the selector sludge significantly higher than that in the sludge harvested from the conventional system, indicating that the higher metal sorption capacity of selector sludge may be due to the selection of the ECP-producing bacteria (i.e., Zoogloea sp.) by the selector system.

  • PDF

Competitive Solvent Extraction of Alkali Metal Ions with Azacrown Ether Phosphinic Acids (아자크라운에테르포스피닉산에 의한 알카리금속이온의 경쟁용매추출)

  • Nam, Chong-Woo;Chung, Yeong-Jin;Yang, Il-Woo
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.266-272
    • /
    • 1992
  • Azacrownoalkyl phenylphosphinic acids were synthesized and their competitive solvent extraction characteristics from water to chloroform layer were investigated. Phosphinic acids were synthesized in good yields by one step reaction of phenylphosphinate, aldehyde, and monoazacrown ether and then basic hydrolysis of the resulting phosphinate dsters. These complexing agents revealed a wide effective pH range in extraction of alkali metal ions from water to the organic phase and total metal ion loading at pH 11 was about 75%. The selectivity of the cation extraction was determined mainly by the cavity size of the azacrown ethers, showing $Na^+$ >> $K^+$ > $Rb^+$ > $Li^+$ > $Cs^+$ for the alkyl phenylphosphinic acid ${\underline{2}}$, containing monoaza-15-crown-5 and $K^+$ >> $Rb^+$ > $Na^+$ > $Cs^+$ > $Li^+$ for the alkyl phenylphosphinic acid, ${\underline{3}}$, containing monoaza-18-crown-6 moiety. Applicable pH range of these azacrown ether phosphinic acids in solvent extraction of alkali metal cations was wider than a crownether carboxylic acid with similar selectivity, showing considerable amount of metal ion loading in slightly acidic or neutral media.

  • PDF