• 제목/요약/키워드: Alkali Solution

Search Result 511, Processing Time 0.031 seconds

Characterization of Microemulsion of Crude Oil Using Alkali-Surfactant Solution (알칼리-계면활성제 용액을 이용한 인도네시아 A원유의 마이크로에멀전 특성)

  • Lee, Sang Heon;Kim, Sang Kyum;Bae, Wisup;Rhee, Young Woo
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.259-264
    • /
    • 2015
  • For the enhanced oil recovery, one of the most important factors is to determine the surfactant formulation in chemical flood. The objective of this study is to analyze the microemulsion formed between the alkali-surfactant (AS) solution and A crude oil for screening surfactants. The alkali-surfactant solution was manufactured by using the surfactant purchased from AK ChemTech. $C_{16}-PO_7-SO_4$ and sodium carbonate solution were used as surfactant and alkaline, respectively. Both TEGBE and IBA were used as a co-solvent. The AS solution and A crude oil can form a Type III middle phase microemulsion at the salinity from 0.0 wt%~3.6 wt%. Increasing the salinity causes the phase transition of microemulsion from the lower (Type I) to middle (Type III) to upper (Type II) phase. Interfacial tension (IFT) values calculated by Huh's equation were in good agreement with ultralow IFT. According to this characteristic, the surfactant purchased from a domestic company can be applied to the enhanced oil recovery.

Effect of Concentration of NaOH and NaCl in Dipping Solution and Dipping Period of Egg in Completeness of Egg Pidan (침지액의 NaOH와 NaCl의 농도 및 계란 침지기간이 계란 피단의 완성도에 미치는 영향)

  • Shin, Teak-Soon;Cho, Seong-Keun;Lee, Hong-Gu;Cho, Byung-Wook;Kang, Han-Seok;Park, Hyean-Cheal;Bae, Seok-Hyeon;Kim, Yun-Seok;Kim, Byeong-Woo
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.117-126
    • /
    • 2012
  • This study carried out on the manufacturing of pidan. The production of pidan can be one of solutions for over-produced eggs and stable egg price. For the alkali-pickling solution for manufacturing of Pidan, the tested concentration of NaOH and NaCl were respectively as 3, 5, 7% and 5, 10, 15, 20%, and examined every 2 days for 14days. According to the results, pH value of alkali-pickling solution was increased by the increment of NaOH concentration and the pickling period, and was decreased by the increment of NaCl concentration. The pH value of egg yolk was increased by the increment of NaOH concentration, but it was not significantly different by the NaCl concentration. By the increment of NaOH and NaCl concentrations, the alkali infiltration in egg yolk and egg white was accelerated. Furthermore, the weight change of the eggs in the alkali-solution has no effects on manufacturing of Pidan. Liquefied albumen showed significant differences by NaOH concentration rather than that of NaCl. There was no liquefied albumen for 14days at 3% of NaOH, but it was found between 11-12days at 5% and 8-10days at 7%, respectively. The pH values of egg white when it was liquefied albumen were between 11.8 and 12.0. Pidan was made by heat treatment after 6-7days dipped in the solution at the concentration of 7%, about 10days at 5%, and 12-14days at 3% of NaOH, respectively. Although, the period of manufacturing of Pidan was saved by the increment of NaOH concentration, liquefied albumen was accelerated and the food preference was decreased by ammonia odor. Therefore, the suitable concentration of NaOH is between 3 and 5%, and that of NaCl is between 5 and 10% due to the effect of salinity by the soaking period. Through this study, optimal pickling solution and dipping time for manufacturing of Pidan was figured out, and also find out that it can save a time about 15days for manufacturing of Pidan.

Varietal Variation of Alkali Digestion Value and Its Relationship with Gelatinization Temperature and Water Absorption Rate of Milled Rice Grain (쌀 알칼리붕괴반응의 품종간 변이와 호화온도 및 수분흡수율과의 관계)

  • Kwang-Ho Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.1
    • /
    • pp.28-36
    • /
    • 1992
  • Fifty rice varieties were tested for alkali digestibility of milled rice grain at four different KOH levels, and twenty-four varieties selected were tested again for alkali digestibility at different degrading times and KOH levels. Gelatinization rate at several heating times and heating temperatures, and water absorption rate at 21$^{\circ}C$ and 77$^{\circ}C$ water temperatures were observed using rice samples of twenty-four varieties to clarify the relationship between alkali digestibility response, gelatinization rate and water absorption rate. Varietal difference of ADV in Japonica and Tongil tye rices was biggest at KOH 1.2%, but it was better to test at KOH 1.2% and 1.4% levels to know the exact alkali digestibility response of rice varieties. Rice varieties tested could be classified into three groups, low, intermediate and high, based on their alkali digestibility response at four KOH levels, and most of Korean cultivated rice varieties were belonged to intermediate or high ADV group. Varietal variation was also found in alkali degrading response at different soaking times in alkali solution. Low ADV varietal group showed higher gelatinization temperature and needed longer heating time for complete gelatinization compared with intermediate or high ADV group. Same trends was found between intermediate and high ADV groups, but varietal variation in the same ADV group was also found in gelatinization temperature and heating time needed for complete gelatinization of rice grain. Water absorption rate of low ADV group was lower than intermediate or high ADV group both at 21$^{\circ}C$ and 77$^{\circ}C$ water temperatures, and intermediate ADV group showed lower absorption rate than high ADV group only in initial water absorption stage at 21$^{\circ}C$.

  • PDF

Biochemicl Caracterization of Entomocidal Parasporal Crystals of Bacillus thuringiensis Strains (Bacillus thuringiensis 결정성독소의 생화학적 특성)

  • Lee, Yeong-Geun;Gang, Seok-Gwon;Kim, Sang-Hyeon
    • Journal of Sericultural and Entomological Science
    • /
    • v.31 no.1
    • /
    • pp.37-44
    • /
    • 1989
  • The parasporal crystals of Bacillus thuringinsis subspecies kurstaki, dendrolimus, finitimus, aizawai and israelensis were compared by polyacrylamide electrophoresis, amino acid composition and immunological analysis. In the subspecies of kurstaki, dendrolimus, finitimus and aizawai, the molecular weights of main subusnits of crystal solubilized by alkaline solution were 1.3${\times}$105 and 6.5${\times}$104 while those of subsp. israelensis were 4${\times}$104 and 1,4${\times}$104. The degradation of lepidopteran toxic subspecies crystals by silkworm midgut protease showed 6.0-6.4${\times}$104 molecular weight and the pattern of degradation of subsp. israelensis crystals was similar to that of alkaline solution treatment. In the amino acid composition, aspartic acid in subsp. israelensis and glutiamic acid in the other four subspecies were the most abundant. The immunological characteristics of the crystals revealed that the antibody produced against the alkali-solubilized crystal protein of subsp. israelensis reacted with only its antigen, but the crystal antigens from the other four lepidopteran toxic subspecies did cross-react with each other as well as with their own homologous antisera.

  • PDF

Compressive Strength Properties of Geopolymer Using Power Plant Bottom Ash and NaOH Activator (화력발전소 바텀애쉬와 수산화나트륨 활성화제를 이용해 제작한 지오폴리머의 압축강도 특성)

  • An, Eung-Mo;Cho, Sung-Baek;Lee, Su-Jeong;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Korean Journal of Materials Research
    • /
    • v.22 no.2
    • /
    • pp.71-77
    • /
    • 2012
  • When a new bonding agent using coal ash is utilized as a substitute for cement, it has the advantages of offering a reduction in the generation of carbon dioxide and securing the initial mechanical strength such that the agent has attracted strong interest from recycling and eco-friendly construction industries. This study aims to establish the production conditions of new hardening materials using clean bottom ash and an alkali activation process to evaluate the characteristics of newly manufactured hardening materials. The alkali activator for the compression process uses a NaOH solution. This study concentrated on strength development according to the concentration of the NaOH solution, the curing temperature, and the curing time. The highest compressive strength of a compressed body appeared at 61.24MPa after curing at $60^{\circ}C$ for 28 days. This result indicates that a higher curing temperature is required to obtain a higher strength body. Also, the degree of geopolymerization was examined using a scanning electron microscope, revealing a micro-structure consisting of a glass-like matrix and crystalized grains. The microstructures generated from the activation reaction of sodium hydroxide were widely distributed in terms of the factors that exercise an effect on the compressive strength of the geopolymer hardening bodies. The Si/Al ratio of the geopolymer having the maximum strength was about 2.41.

Rheological Properties of Biopolymer Produced by Alkali-Tolerant Bacillus sp. (알카리 내성 Bacillus sp.가 생산하는 생물 고분자의 리올로지적 성질)

  • Lee, Shin-Young;Kim, Jin-Young;Shim, Chang-Sub
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.538-544
    • /
    • 1996
  • A highly viscous biopolymer from alkali-tolerant Bacillus sp. was purified and its rheological properties were studied. 1% (w/v) solution of purified biopolymer showed pseudoplastic fluid behavior with the yield stress similar to those of xanthan and guar gum, and its consistency index was exponentially dependent on concentration and temperature. The concentration dependency of consistency index exhibited two rectilinear plots with different slopes at 1% concentration and pseudoplastic property increased with the increase of biopolymer concentration. The biopolymer solution exhibited a low temperature dependency and the activation energy of flow was 1.16 kacl/g mol. The apparent viscosity was very dependent on the change of pH and the addition of salt. However, no organic solvent effects were observed effects of viscosity synergism with the addition of viscosifier were not observed.

  • PDF

Preparation and Characterization of Coating Solution Based on Waterborne Polyurethane Dispersion containing Fluorine for Primer on Electro Galvanized Steel Sheet

  • Jin, Chung Keun;Lim, Sung Hyung
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.207-212
    • /
    • 2015
  • The purpose of this research was to synthesize fluorine modified waterborne polyurethane dispersion (F-WPU) by soap-free (internal emulsifier) emulsion polymerization techniques, to prepare coating solution based on fluorine modified waterborne polyurethane dispersion (F-WPU) and to compare the chemical and thermo-mechanical properties on the electrogalvanized steel sheet. Environmentally friendly F-WPU was prepared with a fluorinated polyol containing 60 wt% of fluorine. There are various ways of combining a wide variety of fluorinated polyols and diisocyanate to exhibit novel properties of waterborne polyurethane dispersion. Components of coating solution were largely divided into 4 kinds i.e., F-WPU, acrylic emulsion, silane coupling agent, and colloidal silicate. F-WPU coating solution on the electro-galvanized steel sheet showed excellent properties of corrosion resistance, alkali resistance and heat resistance, as compared to other coating solutions using a general waterborne resin. The F-WPU coating solution's reliable effects are possibly due to the fluorine atoms incorporated even in a small amount of F-WPU.

Characteristics of pre-extracted hemicelluloses from Korean mixed wood by hot water and alkali solution and its effect on handsheet properties (열수 및 알칼리 용액을 이용하여 국산 목재 칩으로부터 선추출한 헤미셀룰로오스의 특성과 이에 따른 수초지 물성 변화)

  • Seo, Dong-Il;Lee, Sang-Hoon;Sim, Kyu-Jeong;Lee, Hak-Lae;Youn, Hye-Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.60-67
    • /
    • 2011
  • Hemicelluloses pre-extracted from Korean mixed wood chip were investigated as a wet-end additive. Hemicelluloses dissolved in hot water and alkali solution were isolated by ethyl alcohol precipitation from pre-extractives. They showed molecular weight of 9,000 ~ 27,000 g/mol as revealed by size exclusion chromatography. The reduction of molecular weight through hot water extraction was caused by autohydrolysis. Chemical composition of the hemicelluloses were analyzed with high-performance liquid chromatography and UV-Vis spectroscopy. As the surface charge of isolated hemicelluloses were negative, the adsorption of hemicelluloses onto softwood unbleached kraft pulp fiber was promoted by poly-DADMAC. The physical properties of handsheets increased as the molecular weight of hemicellulose increased. On the other hands, the optical property decreased with hemicellulose adsorption.

A Study on the Pretreatment of Activated Sludge for Bio-hydrogen Production Process (생물학적 수소생산 공정 개발을 위한 오니 슬러지 전처리에 대한 연구)

  • Park, Dae-Won;Kim, Dong-Kun;Kim, Ji-Seong;Park, Ho-Il
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.3
    • /
    • pp.187-193
    • /
    • 2004
  • In this study, Anaerobic sewage sludge in a batch reactor operation at $35^\circ{C}$ was used as the seed to investigate the effect of pretreatments of waste activated sludge and to evaluate its hydrogen production potential by anaerobic fermentation. Various pretreatments including physical, chemical and biological means were conducted to utilize for substrate. As a result, SCODcr of alkali and mechanical treatment was 15 and 12 times enhanced, compared with a supernatant of activated sludge. And SCODcr was 2 time increase after re-treatment with biological hydrolysis. Those were shown that sequential hybridized treatment of sludge by chemical & biological methods to conform hydrogen production potential in bath experiments. When buffer solution was added to the activated sludge, hydrogen production potential increased as compare with no addition. Combination of alkali and mechanical treatment was higher in hydrogen production potential than other treatments.

ASR Resistance of Ternary Cementitious Systems Containing Silica Fume-Fly Ash Using Modified ASTM C 1260 Method

  • Shon, Chang-Seon;Kim, Young-Su;Jeong, Jae-Dong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.497-503
    • /
    • 2003
  • Supplementary cementitious materials (SCM) such as fly ash, ground granulated blast furnace slag and silica fume are now being extensively used in concrete to control expansion due to alkali-silica reactivity (ASR). However, the replacement level of a single SCM needed to deleterious ASR expansion and cracking may create other problem and concerns. For example, incorporating silica fume at levels greater than 10% by mass of cement may lead to dispersion and workability concerns, while fly ash can lead to poor strength development at early age, The combination of silica fume and fly ash in ternary cementitious system may alleviate this and other concerns, and result in a number of synergistic effects. The aim of the study was to enable evaluation of more realistic suitability of a silica fume-fly ash combination system for ASR resistance based on an in-house modification of ASTM C 1260 test method. The modification can be more closely identified with actual field conditions. In this study three different strengths of NaOH test solution(1N, 0.5N, and 0.25N) were used to measure the expansion characteristics of mortar bar made with a reactive aggregate. The other variable included longer testing period of 28 days instead of a conventional 14 days.