• Title/Summary/Keyword: Alkali Oxide

Search Result 135, Processing Time 0.023 seconds

A Study on the Stability of Using Alkali Solution Desalination on Gilt Plated Silver-Iron Artifacts (알칼리 수용액을 이용한 출토 철지금은장관정의 탈염처리 적용성 평가)

  • Park, Jun Hyeon;Bae, Go Woon;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.37 no.2
    • /
    • pp.179-189
    • /
    • 2021
  • In this study, the research objects are gilt plated silver-iron nails excavated from the west of the tombs in Neungsan-ri, Buyeo. A gilt plated silver-iron nail was fabricated by combining silver and iron via heating and then gilding amalgam on top of this combination, demonstrating that this ancient artifact that can be replicated using current technology. Since the metal (Au, Ag) surface of these gilt plated artifacts are covered with iron oxide, which slips into the cracks and scratches of the artifacts as well, desalination is essential. Based on the results of the preliminary experiment, the research objects were classified into grades A, B, and C, according to the degree of corrosion and then desalinated using an alkali solution (NaOH, Sodium Sesquicarbonate of 0.1 M) at 60℃. The results demonstrate that the more serious is the degree of corrosion, the more is the amount of Cl- detected. Further, more Cl- was released when NaOH was used than when sodium sesquicarbonate was used, for all grades except Grade A. Furthermore, the more serious is the degree of corrosion, the longer is the desalination period and the reaction with NaOH for all grades except Grade A. A comparison of the Fe composition of the surface before and after desalination shows that Fe composition is the use of NaOH resulted in a smaller increase compared with the use of sodium sesquicarbonate, for all grades except Grade B. However, four of the nails were damaged owing to NaOH (Grade B 3ea, Grade C 1ea) during desalination. Thus, Cl- ions are more stably released when sodium sesquicarbonate is used than when NaOH is used.

Studies on the Surface Charge Characteristics and Some Physico-Chemical Properties of two Synthetic Iron Hydrous Oxides and one Aluminum Hydroxide Minerals (합성(合成) 수산화(水酸化) 철(鐵) 광물(鑛物)과 수산화(水酸化) 알루미늄 광물(鑛物)의 표면(表面) 전하(電荷) 및 물리화학적(物理化學的) 특성(特性)에 관(關)한 연구(硏究))

  • Lim, Sookil H.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.147-154
    • /
    • 1984
  • Two Fe-hydrous oxide A,B and one Al-hydroxide minerals were synthesized precipitating Fe $Cl_3$ and $AlCl_3$ with alkali solution(NaOH) at pH 6.0, 12.0 and 4.5 respectively, for precise understanding of physico-chemical and surface charge characteristics of soils in which these minerals are dominant. Identification of these final products, effect of free and amorphous materials on X-ray diffraction analysis, particle size distribution and surface change characterics of these minerals were performed. Fe-hydroxide A and B were identified as great deal of X-ray amorphous material and as goethite with large amount of X-ray amorphous material, respectively. Dehydration by oven at $105^{\circ}C$ of these minerals exhibited akaganeite peaks with low X-ray amorphous hump and pure goethite peaks for Fe-hydroxide A and B, respectively. Both minerals, however, turned into hematite upon firing at $550^{\circ}C$. On the other hand, Al-hydroxide identified as mixture of gibbsite and bayerite of around 7:3 ratio. Application of sodium dithionite and ammonium oxalate solutions for removal of free or amorphous Fe and Al from these minerals revealed that only peak intensities of Al-hydroxide system were enhanced upon Al-extraction by oxalate solution even though dithionite solution was much powerful to extract Fe from Fe-hydrous oxide systems. Original(wet) Fe-hydrous oxide A has the highest specific surface and surface charge development(negative and positive), and the greatest amount of less than $2{\mu}m$ sized particles. Specific surface and clay sized particles(less than $2{\mu}m$) of Fe-hydrous oxide A, however, were drastically reduced upon dehydration($P_2O_5$ and oven drying) compare to the rest minerals. The Z.P.C. of these synthetic minerals were 8.0-8.5, 7.5-8.0 and 5.5-6.0 for Fe-hydrous oxide A, B and Al-hydroxide, respectively.

  • PDF

Corrosion Characteristics of Reinforced Steel Bar Emedded in Multiple Mortar Specimen(W/C:0.5) Aged 5 Years in Seawater

  • Moon, Kyung-Man;Takeo, Oki;Won, Jong-Pil;Park, Dong-Hyun;Kim, Yun-Hae
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • Reinforced concrete structures have been increasingly widely used in numerous industrial fields. These structures are often exposed to severely corrosive environments such as seawater, contaminated water, acid rain, and the seashore. Thus, the corrosion problems that occur with the steel bars embedded in concrete are very important from the safety and economic points of view. In this study, the effects of the cover thickness on the corrosion properties of reinforced steel bars embedded in multiple mortar test specimens immersed in seawater for 5 years were investigated using electrochemical methods such as the corrosion potentials, polarization curves, cyclic voltammograms, galvanostat, and potentiostat. The corrosion potentials shifted in the noble direction, and the value of the AC impedance also exhibited a higher value with increasing cover thickness. Furthermore, the polarization resistance increased with increasing cover thickness, which means that the oxide film that is deposited on the surface of a steel bar surrounded by alkali environment exhibits better corrosion resistance because the water, chloride ions and dissolved oxygen have difficulty penerating to the surface of the steel bar with increasing cover thickness. Consequently, it is considered that the corrosion resistance of reinforced steel can be improved by increasing the cover thickness. However, the corrosion resistance values of a steel bar estimated by measuring the corrosion potential, impedance and polarization resistance were not in good agreement with its corrosion resistance obtained by polarization curves.

Synthesis of Diazacrown Ethers Containing Phenolic Side Arms and Their Complex with Divalent Metal Ions

  • Chi, Ki-Whan;Ahn, Yoon-Soo;Shim, Kwang-Taeg;Huh, Hwang;Ahn, Jeong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.5
    • /
    • pp.688-692
    • /
    • 2002
  • The aminomethylation of phenols with para-substituents by the Mannich reaction has successfully been accomplished to produce the Mannich bases 2-6. The compounds 7-8 have also been synthesized in order to identify the effect of the side arms and t he macrocycle in the complex formation. Protonation constants and stability constants of the double armed diaza-18-crown-6 ethers 2-7 with metal ions have been determined by potentiometric method at 25 $^{\circ}C$ in 95 % methanol solution. Under a basic condition (pH > 8.0), the double-armed crown ethers 2-6 revealed stronger interaction with divalent metal ions than the simple diazacrown ether 1. The stability constants with these metal ions were Co 2+ < Ni2+ < Cu2+ > Zn 2+ in increasing order, which are in accordance with the order of the Williams-Irving series. The stability constants with alkali earth metal ions were Ca 2+ < Sr 2+ < Ba 2+ in increasing order, which may be explained by the concept of size effect. It is noteworthy that the hosts 2-6, which have phenolic side arms and a macrocycle, bind stronger with metal ions than the hosts 1 and 7. On the other hand, the host 8, which has phenolic side arms with a pyperazine ring,provided comparable stability constants to those with the host 3. These facts demonstrate that phenolic side arms play a more important role than the azacrown ether ring in the process of making a complex with metal ions especially in a basic condition. In particular, the log KML values for complexation of divalent metal ions with the hosts 2-6 had the sequence, i.e., 2 (R=OCH3) < 3 (R=CH3) < 4 (R=H) < 5 (R=Cl) < 6 (R=CF3). The stability constants of the hosts 5 and 6 containing an electron-withdrawing group are larger than those of the hosts 2 and 3 containing an electron-donating group. This substituent effect is attributed to the solvent effect in which the aryl oxide with an electron-donating group has a tendency to be tied strongly with protic solvents.

Air Pollution Protection onboard by Seawater and Electrolyte

  • An Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2006
  • This research makes a new attempt to apply the activated seawater by electrolysis in the development of two-stage wet scrubber system to control the exhaust gas of large marine diesel engines. First, with using only seawater that is naturally alkaline (pH typically around 8.1). the $SO_2\;and\;SO_3$ are absorbed by relatively high solubility compared to other components of exhaust pollutants, and PM (Particulate Matter) is removed through direct contact with sprayed seawater droplets. Besides, the electrolyzed alkaline seawater by electrolysis, which contains mainly NaOH together with alkali metal ions $(i.e.\;Na^+,\;Mg^{2+},\;Ca^{2+})$, is used as the absorption medium of NOx and $CO_2$. Especially, to increase NOx absorption rate into the alkaline seawater. nitric oxide (NO) is adequately oxidized to nitrogen dioxide $(NO_2)$ in the acidic seawater, which means both volume fractions are adjusted to identical proportion. The results found that the strong acidic seawater was a valid oxidizer from NO to $NO_2$ and the strong alkaline seawater was effective in $CO_2$ absorption In the scrubber test, the SOx reduction of nearly $100\%$ could be achieved and also led to a sufficientPM reduction. Hence, the author believes that applying seawater and its electrolyte would bring the marine air pollution control system to an economical measure. Additionally it is well known that NOx and SOx concentration has a considerable influence on the $N_2O$ emission of green house gas. Although the $N_2O$ concentration exhausted from diesel engines is not as high, the green house gas effect is around 300 times greater than an equivalent volume of $CO_2$. Therefore, we investigated the $N_2O$ removal efficiency with using the electrolyzed seawater too. Finally this research would also plan to treat the effluent by applying electro-dialysis and electro-flotation technique s in the future.

Separation and Recovery of Ce, Nd and V from Spent FCC Catalyst (FCC 폐촉매로부터 Ce, Nd 및 V의 분리 회수 프로세스)

  • Jeon, Sung Kyun;Yang, Jong Gyu;Kim, Jong Hwa;Lee, Sung Sik
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.679-684
    • /
    • 1997
  • The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The selective adsorption and concentration of Ce and Nd from the leaching solution of spent FCC catalysts with sulfuric acid($0.25mol/dm^3$) were carried out by the column method with a chelate resin having a functional group of aminophosphoric acid type. Ce and Nd were separated from eluate liquor containing Al, Nd and V by the precipitation process with oxalic acid. Vanadium is purified from chloride ion coexistance by solvent extraction, employing tri-n-octyl phosphine oxide as extractant with Al in the raffinate solution. Rare metals with the purity of 99 percent were obtained from the spent FCC catalyst.

  • PDF

Hydrogen Storage Technology by Using Porous Carbon Materials (다공성 탄소계 재료를 이용한 수소저장 기술)

  • Lee, Young Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.465-472
    • /
    • 2009
  • The technologies for improving the capacity of hydrogen storage were investigated and the recent data of hydrogen storage by using various porous carbon materials were summarized. As the media of hydrogen storage, activated carbon, carbon nanotube, expanded graphite and activated carbon fiber were mainly investigated. The hydrogen storage in the carbon materials increased with controlled pore size about 0.6~0.7 nm. In case of catalyst, transition metal and their metal oxide were mainly applied on the surface of carbon materials by doping. Activated carbon is relatively cheap because of its production on a large scale. Carbon nanotube has a space inside and outside of tube for hydrogen storage. In case of graphite, the distance between layers can be extended by intercalation of alkali metals providing the space for hydrogen adsorption. Activated carbon fiber has the high specific surface area and micro pore volume which are useful for hydrogen storage. Above consideration of research, porous carbon materials still can be one of the promising materials for reaching the DOE target of hydrogen storage.

Some Factors Effect on the Detergency of Triglyceride (Triglyceride의 세척성에 영향을 미치는 몇가지 요인)

  • Lee Mee Sik;Kim Sung Reon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.5 no.1
    • /
    • pp.15-21
    • /
    • 1981
  • The effect of fatty acid content in oily soil and conditions of washing on the removal of triglyceride have been studied. Cotton lawn was soiled with the four-component soil-tripalmitin, palmitic acid, dodecyl alcohol and dodecane-and washed in constant temperature waterbath shaker. The detergency was estimated by analysis of triglyceride labelled carbon-14 on fabrics before and after washing by means of liquid scintillation counting. It was shown that the detergency of triglyceride washed with the nonionic, nonylphenol poly (10)-ethylene oxide and soap was increased steadily with increasing temperature, whereas with the anionics Na-DBS and SLS, the detergency was rather decreased when the temperature was elevated above $40^{\circ}C$. To investigate the effects of free fatty acid content in soil on the removal of triglyceride, the fabrics were soiled altering palmitic acid content, and then washed. From the results, the detergency of triglyceride was developed with increasing free fatty acid content. With soils containing less than $30\%$ of free fatty acid, of the three detergents tested, the nonionic was by far the most effective soil removal. Soap was intermediate and the synthetic anionic was the poorest. With soil containing $45\%$ of free fatty acid, soap was the most effective soil removal. When NaOH was added to detergent solution. the detergency of triglyceride was improved without regard to detergents. The optimum alkalinity was obtained according to free fatty acid content. And the alkalinity changed to low NaOH concentration with increasing free fatty acid content. From the results mentioned above, it could be concluded that the major removal mechanisms of triglyceride containing oily soil were mesomorphic phase formation, solubilization and soap forma-tion when alkali was added in detergent solution.

  • PDF

Preparation of Visible-light Active TiO2 Nanotubes by Solution Method (액상법에 의한 가시광감응성 티타니아 나노튜브의 제조)

  • Lee, Hyun-Mi;So, Won-Wook;Baeg, Jin-Ook;Kong, Ki-Jeong;Moon, Sang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.182-185
    • /
    • 2012
  • N-doped $TiO_2$nanotubes have been newly prepared by two stage sol-gel and strong-alkali hydrothermal process using $TiCl_4$ and hydrazine/ammonia aqueous solution as raw materials. These nanotubes revealed a well developed anatase crystalline phase and perfect nanotube morphology with the diameter around 10nm and the wall thickness below 3 nm. Also, they showed a superior visible light activity and yellowish color due to the light absorption redshifted by ~35 nm and ~25 nm compared to undoped $TiO_2$ nanotubes and anatase nanoparticles, respectively.

Mechanical Properties of Reclaimed Plastic Concrete (재생수지콘크리트의 역학적 성질에 관한 연구)

  • 전진영;고재군
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.132-141
    • /
    • 1987
  • The objective of the study was to obtain the compressive the tensile and the fleniril strengthes, thermal resistance, chemical resistance and fire resistance of the reclaimed plastic corcrete in order to investigate the feasibility as a new construction material This reclaimed plastic concrete is a compositive material which is composed of sand and blend of 50% of LDPE(Low density polyethylene) and 50% of HDPE (High density polyethylene) which are inexpensive and easy to reclaim. The results obtained in the study are summarized as follows: 1. As the binder content ranging from 20 to 40 % increase, the compresie, the splitting tensile and the flexural strengthes were increased. The compressive strenzth of the specimen tested was the highest and flexural strength the next and tensile strength the lowest 2. The compressive, the tensile and flexural strengthes of specimens made of fine sand were higher than those of coarse sand. The compressive, the tensile and the flexural strengthes of specimens made of high pressure molding were higher than those of low pressure molding. 3.In comparison with different additives, the specimens with carbon black was excellent and B. H. T. good and ferric oxide poor for thermal resistance. 4. In relationship between the flexural strength with varying temperature from -23$^{\circ}C$ to 80$^{\circ}C$. The flexural strengthes were decreared as temperature increased at 25 %, 30 % and 35 % of binder contents, respectively. Especially at 60$^{\circ}C$, the flexural strength was significantly decreased. 5. The decrement of flexural strengthes and the weight losses after 7 days immersion in acid or alkali solutions were not significant. 6. Fire resistance of the reclaimed plastic concrete was not significantly influenced by the contents of sand. However, the fire resistance of the reclaimed plastic concrete was depend upon melting and ignition properties of the binder itself. Therefore. a proper selection of the binder and the fire retardant are recommended in arder to improve fire resistance of the reclaimed plastic concrete.

  • PDF