• Title/Summary/Keyword: Alkali Activation

Search Result 112, Processing Time 0.022 seconds

A Fundamental study on the Characteristics of Zeolite Cement Mortar (제올라이트 시멘트 모르타르의 재료적 특성에 관한 기초 연구)

  • Jo, Byung-Wan;Kang, Suk-Won;Park, Seung-Kook;Choi, Ji-Sun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.203-209
    • /
    • 2011
  • The cement industry is expected to face a major set-back in the near future due to its large energy consumption and $CO_2$ production, causing global warming. In order to overcome these environmental problems, this research has bee carried out to find a cement substitute material. One possible cement substitute material is Zeolite cement. In this study, the materialistic characteristics of Zeolite cement mortar were evaluated. Natural Zeolite cement mortar was prepared using alkali activation (NaOH) instead of water ($H_2O$) to determine achievable strength and appropriate mixing ratio. Based on the mixing ratio, functional material was added to alkali active agent to harden Zeolite mortar to develop a highly functional construction material. The study result showed that pure Zeolite cement mortar achieved compressive strength of 42 MPa in 7 days depending on the mixing amount of alkaline catalyst and the hardening temperature, showing high efficiency and possibility as a new construction material.

Effects of Incineration Waste Ash and Gypsum Substitution on the Properties of Blast Furnace Slag Mortar using Recycled Aggregate (소각장 애쉬 및 석고치환이 고로슬래그 미분말 기반 순환골재 모르타르의 물성에 미치는 영향)

  • Han, Min Cheol;Han, Dong Yeop;Lu, Liang Liang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.2
    • /
    • pp.161-167
    • /
    • 2015
  • Nowadays, all the world face to the global warming problems due to the emission of $CO_2$. From the previous studies, recycled aggregates were used as an alkali activator in blast furnace slag to achieve zero-cement concrete, and favorable results of obtaining strength were achieved. In this study, gypsum and incineration waste ash were used as the additional alkali activation and effects of the gypsum and incineration waste ash to enhance the performance of the mortar were tested. Results showed that although the replacement ratio of 0.5% of incineration waste ash and 20% of anhydrous gypsum resulted in the low of mortar at the early age, while it improved the later strength and achieved the similar strength to that of conventional mortar (at 91 days).

Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon (알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성)

  • Bak, Young-Cheol;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.671-677
    • /
    • 2016
  • The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at $900^{\circ}C$. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature $20{\sim}850^{\circ}C$, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, $850^{\circ}C$, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.

Study on preparation of blast furnace slag mortars using alkali activation (알칼리 활성화에 의한 고로슬래그 경화체의 제조 연구)

  • Shin, Jae Ran;Lim, Yun Hui;Lee, Ju Yeol;Park, Byung Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.188-193
    • /
    • 2015
  • Blast Furnace Slag is good for enhancing the qualities of concrete such as reducing hydration heat increasing fluidity, long-term strength and durability, but it has some problems: construction time is increased or the rotation rate of form is decreased due to low development of early strength. In this study, an aqueous alkali solution for alkali activated reaction was obtained by the electrolysis using concentrated water discharged from seawater desalination process. Prepared aqueous alkali solution was applied to produce mortars using blast furnace slag. The results can be summarized as follows : For the mortar, compressive strength was decreased below 2% of NaOH and increased below 6% of NaOH. And compressive strength was increased gradually with increasing NaOCl contents. However, NaCl contents of mortars caused a decrease of 28days strength above early strength.

Strength Development of the Concrete Incorporating Blast Furnace Slag and Recycled Aggregate as Alkali Activator (고로슬래그 미분말과 알칼리 자극재로서 순환골재를 사용하는 콘크리트의 강도발현 특성)

  • Kim, Jun-Ho;Han, Min-Cheol;Han, Cheon-Goo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • The objective of this study is to evaluate the strength development of blast furnace slag concrete in response to the use of recycled aggregate as alkali activator. The influence of the amount of recycled aggregate was evaluated depending on different ratios of replacement for each RFA and RCA to NFA and NCA, respectively. The results indicated that as replacement of RFA and RCA increased, their strength exhibited to be increased. This was due to the fact that the latent hydraulic properties of blast furnace slag was activated by the alkali in recycled aggregates. However, in case of 365-days, it showed lower compressive strength than using NA(natural aggregates) which could be explained as the exhaustively use of alkali containing in RA. The specimens using RA showed about 90% of compressive strength comparing with specimens using NA.

Alkali-Activated Coal Ash(Fly Ash, Bottom Ash) Artificial Lightweight Aggregate and Its Application of Concrete (알칼리 활성화 석탄회(Fly Ash, Bottom Ash) 인공경량골재 및 콘크리트 적용)

  • Jo Byung-Wan;Park Seung-Kook;Kwon Byung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.751-757
    • /
    • 2004
  • Artificial lightweight aggregates and solids were manufactured with coal ash(fly ash, bottom ash). In order to apply alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate to concrete, several experimental studies were performed. Thus, it can be noticed the optimal mix proportion, basic characteristies, mechanical properties and environmental safety of alkali-activated coal ash(fly ash, bottom ash) solid and alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate. Also, the freezing-thawing test property of concrete using the alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate was investigated. As a result, the optimal mixing proportion of coal ash(fly ash, bottom ash) solid to make alkali-activated artificial lightweight aggregates was cement $10\%$, water glass $15\%$, NaOH $10\%$, $MnO_2\;5\%$. Alkali-activated coal ash(fly ash, bottom ash) solid can achieve compressive strength of 36.4 MPa, at 7-days, after the paste was cured at air curing after moist curing during 24 hours in $50^{\circ}C$. Alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate that do impregnation to polymer was improved $10\%$ crushing strength $150\%$, and was available to concrete.

Isothermal Conduction Calorimetry Analysis of Alkali Activated Slag Binder (알칼리 활성 슬래그 결합재의 미소수화열 분석)

  • Choi, Young-Cheol;Cho, Hyun-Woo;Oh, Sung-Woo;Moon, Gyu-Don
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.237-243
    • /
    • 2015
  • In this research, isothermal conduction calorimetry analysis has been conducted to investigate the reactivity of alkali activated slag binders. In order to secure the reactivity and workability of alkali activated slag binders, experiences with various types and concentrations of alkali activators were performed. Isothermal conduction calorimetry were measured with different alkali activators and mass ratio of $SO_3$ to binders as variables, and sodium tripolyphosphate ($Na_2P_3O_{10}$) and hydrated sodium borate ($Na_2B_4O_710H_2O$) were used to control setting time. As a results, alkali activated slag binders required alkali activators with 4 to 5 percent of concentration to accelerate the formation of calcium silicate hydrate(C-S-H) by alkali-activation, and overall heat generation rate delayed as accumulated heat decreased due to the high $SO_3$ contents. Moreover, the use of hydrated sodium borate as setting retarder causes elongated setting time due to delaying heat generation, so it can be considered that setting retarder played an important role in delaying total heat generation rate.

Strength Development of Alkali-Activated Fly Ash Exposed to a Carbon Dioxide-Rich Environment at an Early Age

  • Park, Sol-Moi;Jang, Jeong-Gook;Kim, Gwang-Mok;Lee, Haeng-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • The development of a binder system with a lower carbon footprint as an alternative to Portland cement has been intensely researched. In the present study, alkali-activated fly ash exposed to carbon dioxide at an early age was characterized in compressive strength tests and by MIP, XRD and FT-IR analyses. The compressive strength of carbonated specimens experienced a dramatic increase in comparison to uncarbonated specimens. The microstructural densification of the carbonated specimens was evidenced by MIP. The XRD pattern showed peaks assigned to nahcolite, indicating that the pH was lower in the carbonated specimens. Under the carbon dioxide-rich environment, the aluminosilicate gel reached a more Si-rich state, which improved the mechanical properties of the alkali-activated fly ash.

Dilute Solution Properties of Biopolymer Produced by Alkali-Tolerant Bacillus sp. (알칼리 내성 Bacillus Sp.에 의한 생물 고분자의 희석용액 특성)

  • Lee, Shin-Young;Kim, Jin-Young
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.39-44
    • /
    • 2000
  • Highly viscous biopolymer from alkali-tolerant Bacillus sp. was purified and its solution properties were investigated. The intrinsic viscosities for crude biopolymer and biopolymers purified by dialysis or CPC(cetylpyridinium chloride) treatment were 58.24, 73.60 and 42.18 dL/g, respectively. The intrinsic viscosity of biopolymer showed the maximum value at the neutral pH but it was decreased remarkably at the alkaline or acidic pH. Biopolymer exhibited the property of polyelectrolyte, showing the sharp decrease of intrinsic viscosity by the addition of NaCl. Intrinsic viscosity of dilute solution at the low NaCl concentration was exponentially dependent on temperature and its temperature dependency was increased with NaCl concentrations. The chain stiffness, coil overlap parameter, and critical concentration were 0.09, 5.25 and 0.07g/dL, respectively. Temperature dependency on intrinsic viscosity of biopolymer solution was different each other at $45^{\circ}C$. Flow activation energies at temperatures above $45^{\circ}C$ were constant, while those at temperatures below $45^{\circ}C$ increased with increase of added NaCl concentration.

  • PDF

Development of slag based Shirasu geopolymer

  • Katpady, Dhruva Narayana;Takewaka, Koji;Yamaguchi, Toshinobu
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • Shirasu, a pyroclastic flow deposit, showed considerable performance as aluminosilicate source in geopolymer, based on past research. However, the polymerization reactivity was somewhat lower compared to the traditional fly ash based geopolymer even though the long-term strength was fairly good. The present study concentrates on the development of higher initial strength performance of Shirasu based geopolymer by utilizing ground granulated blast furnace slag as an admixture. Mortars with various mix proportions were adopted to study the effect of parametric changes on strength development along with the addition of slag in different percentages. A combination of sodium hydroxide and sodium silicate was used as alkaline activators considering parameters like molar ratios of alkali to geopolymer water and silica to alkali molar ratio. The mortars were cured at elevated temperatures under different curing conditions to analyze the effect on strength development. Compressive strength test, mercury intrusion porosimetry and X-ray powder diffraction were carried out to assess the strength performance and microstructure of slag-Shirasu based geopolymer. Based on the experimental study, it was observed that the initial and long-term strength development of Slag-Shirasu geopolymer were improved by the addition of slag.