• 제목/요약/키워드: Alignment mark

검색결과 28건 처리시간 0.025초

기판 정렬 알고리즘 개발 및 BGA 노광 장비 적용 (Development of Panel Alignment Algorithm and Its Application to BGA Lithography Equipment)

  • 유선중
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.77-84
    • /
    • 2009
  • Alignment error of the BGA lithography equipment is mainly caused by the dimensional change of the BGA panel which is generated during the manufacturing processes. To minimize the alignment error, 'mark alignment' algorithm in place of 'center alignment' algorithm was proposed and the optimal solution for the algorithm was derived by simple analytic form. The developed algorithm distributes evenly the alignment error over the whole panel which was evaluated by the numerical simulation. Finally, the developed algorithm was implemented to the controller of the lithography equipment and the alignment error was measured at the fiducial mark location. From the measurement, it is also concluded that the developed alignment algorithm be effective to reduce the maximum value of alignment error.

정렬오차 추정 필터에 기반한 비전 정렬 시스템의 고속 정밀제어 (Fast and Fine Control of a Visual Alignment Systems Based on the Misalignment Estimation Filter)

  • 정해민;황재웅;권상주
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1233-1240
    • /
    • 2010
  • In the flat panel display and semiconductor industries, the visual alignment system is considered as a core technology which determines the productivity of a manufacturing line. It consists of the vision system to extract the centroids of alignment marks and the stage control system to compensate the alignment error. In this paper, we develop a Kalman filter algorithm to estimate the alignment mark postures and propose a coarse-fine alignment control method which utilizes both original fine images and reduced coarse ones in the visual feedback. The error compensation trajectory for the distributed joint servos of the alignment stage is generated in terms of the inverse kinematic solution for the misalignment in task space. In constructing the estimation algorithm, the equation of motion for the alignment marks is given by using the forward kinematics of alignment stage. Secondly, the measurements for the alignment mark centroids are obtained from the reduced images by applying the geometric template matching. As a result, the proposed Kalman filter based coarse-fine alignment control method enables a considerable reduction of alignment time.

LCD 대평판 고정밀 얼라인먼트를 위한 비전 시스템 연구 (A Study on Vision System for High Precision Alignment of Large LCD Flat Panel Display)

  • 조성만;송춘삼;김준현;김종형
    • 제어로봇시스템학회논문지
    • /
    • 제15권9호
    • /
    • pp.909-915
    • /
    • 2009
  • This work is to develop a vision system for high precision alignment between upper and lower plates required at the imprinting process of the large LCD flat panel. We compose a gantry-stage that has highly repeated accuracy for high precision alignment and achieves analysis about thermal transformations of stage itself. Position error in the stage is corrected by feedback control from the analysis. This system can confirm alignment mark of upper and lower plates by using two cameras at a time for the alignment of two plates. Pattern matching that uses geometric feature is proposed to consider the recognition problem for alignment mark of two plates. It is algorithm to correct central point and angle for the alignment from the recognized mark of upper and lower plates based on the special characteristics. At the alignment process, revision for error position is performed through Look and Move techniques.

노광시스템을 위한 자동 정렬 비젼시스템 (An Automatic Visual Alignment System for an Exposure System)

  • 조태훈;서재용
    • 반도체디스플레이기술학회지
    • /
    • 제6권1호
    • /
    • pp.43-48
    • /
    • 2007
  • For exposure systems, very accurate alignment between the mask and the substrate is indispensable. In this paper, an automatic alignment system using machine vision for exposure systems is described. Machine vision algorithms are described in detail including extraction of an alignment mark's center position and camera calibration. Methods for extracting parameters for alignment are also presented with some compensation techniques to reduce alignment time. Our alignment system was implemented with a vision system and motion control stages. The performance of the alignment system has been extensively tested with satisfactory results. The performance evaluation shows alignment accuracy of lum within total alignment time of about $2{\sim}3$ seconds including stage moving time.

  • PDF

평판 디스플레이 비전 정렬 시스템의 기구학 및 제어 (Kinematics and Control of a Visual Alignment System for Flat Panel Displays)

  • 권상주;박찬식;이상무
    • 제어로봇시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.369-375
    • /
    • 2008
  • The kinematics and control problem of a visual alignment system is investigated, which plays a crucial role in the fabrication process of flat panel displays. The first solution is the inverse kinematics of a 4PPR parallel alignment mechanism. It determines the driving distance of each joint to compensate the misalignment between mask and panel. Second, an efficient vision algorithm for fast alignment mark recognition is suggested, where by extracting essential feature points to represent the geometry of a mark, the geometric template matching enables much faster object recognition comparing with the general template matching. Finally, the overall visual alignment process including the kinematic solution, vision algorithm, and joint control is implemented and experimental results are given.

Design of Alignment Mark Stamper Module for LED Post-Processing

  • Hwang, Donghyun;Sohn, Young W.;Seol, Tae-ho;Jeon, YongHo;Lee, Moon G.
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.155-159
    • /
    • 2015
  • Light emitting devices (LEDs) are widely used in the liquid crystal display (LCD) industry, especially for LCD back light units. Therefore, much research has been performed to minimize manufacturing costs. However, the current process does not process LED chips from broken substrates even though the substrate is expensive sapphire wafer. This is because the broken substrates lose their alignment marks. After pre-processing, LED dies are glued onto blue tape to continue post-processing. If auxiliary alignment marks are stamped on the blue tape, post-processing can be performed using some of the LED dies from broken substrates. In this paper, a novel stamper module that can stamp the alignment mark on the blue tape is proposed, designed, and fabricated. In testing, the stamper was reliable even after a few hundred stamps. The module can position the stamp and apply the pattern effectively. By using this module, the LED industry can reduce manufacturing costs.

에지 특징을 이용한 디스플레이 패널 설비의 얼라인 시스템 (Alignment System for Display Panel using Edge Feature)

  • 이호훈;이대종;전명근
    • 한국지능시스템학회논문지
    • /
    • 제25권3호
    • /
    • pp.260-265
    • /
    • 2015
  • 본 논문은 에지 특징을 이용한 얼라인 시스템을 제안한다. 얼라인 시스템은 PCB나 LCD 패널 등에 새겨진 기준 마크(fiducial mark)를 통하여 위치 정보를 획득한다. 그러므로 획득한 영상에서 정확하게 기준 마크를 찾는 것이 얼라인 시스템 성능의 지표가 된다. 에지 특성은 위치, 길이, 형태 등의 기하학적 특징을 지니며 이런 특징은 기준 마크를 찾기 위해 적절하고, 밝기의 변화, 크기 및 각도의 변화에 강한 특성을 지닌다. X, Y 축 이동 및 회전 할 수 있는 장비와 소프트웨어을 이용한 얼라인먼트 실험을 통하여 제안한 시스템의 성능을 검증하였다.

머신비전을 이용한 PCB 스크린인쇄기의 정렬오차측정 및 위치보정 (2) (Measurement and Correction of PCB Alignment Error for Screen Printer Using Machine Vision (2))

  • 신동원
    • 한국정밀공학회지
    • /
    • 제20권6호
    • /
    • pp.96-104
    • /
    • 2003
  • This paper presents the measurement and correction method of PCB alignment errors for PCB screen printer. Electronic equipment is getting smaller and yet must satisfy high performance standard. Therefore, there is a great demand for PCB with high density. However conventional PCB screen printer doesn't have enough accuracy to accommodate the demand for high-resolution circuit pattern and high-density mounting capacity of electronic chips. It is because the alignment errors of PCB occur when it is loaded to the screen printer. Therefore, this study focuses on the development of the system which is able to measure and correct alignment errors with high-accuracy. An automatic optical inspection part measures the PCB alignment errors using machine vision, and the high-accuracy 3-axis stage makes correction for these errors. This system used two CCD cameras to get images of two fiducial marks of PCB. The centers of fiducial marks are obtained by using moment, gradient method. The first method is calculating the centroid by using first moment of blob, and the latter method is calculating the center of the circle whose equation is obtained by curve-fitting the boundaries of fiducial mark. The operating system used to implement the whole set-up is carried in Window 98 (or NT) environment. Finally we implemented this system to PCB screen printer.

대형 평판 디스플레이의 정밀 정렬을 위한 캘리브레이션 기술 (Calibration Technology for Precise Alignment of Large Flat Panel Displays)

  • 홍준호;신동원
    • 한국기계가공학회지
    • /
    • 제21권3호
    • /
    • pp.100-109
    • /
    • 2022
  • In this study, calibration technology that increases the alignment accuracy in large flexible flat panels was studied. For precise of calibration, a systematization of the calibration algorithm was established, and a calibration correction technique was studied to revise calibration errors. A coordinate systems of camera and UVW stage was established to get the global position of the mark, and equations for translational and rotational calibration were systematically derived based on geometrical analysis. Correction process for the calibration data was carried, and alignment experiments were performed sequentially in cases of the presence or absence of calibration-correction. Alignment results of both calibration correction and non-calibration correction showed accuracy performance less than 1㎛. On the other hand, the standard deviation in calibration-correction is smaller than non-calibration correction. Therefore, calibration correction showed improvement of the alignment repeatability.

가변 Threshold를 이용한 Wafer Align Mark 중점 검출 정밀도 향상 연구 (A Study on Improving the Accuracy of Wafer Align Mark Center Detection Using Variable Thresholds)

  • 김현규;이학준;박재현
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.108-112
    • /
    • 2023
  • Precision manufacturing technology is rapidly developing due to the extreme miniaturization of semiconductor processes to comply with Moore's Law. Accurate and precise alignment, which is one of the key elements of the semiconductor pre-process and post-process, is very important in the semiconductor process. The center detection of wafer align marks plays a key role in improving yield by reducing defects and research on accurate detection methods for this is necessary. Methods for accurate alignment using traditional image sensors can cause problems due to changes in image brightness and noise. To solve this problem, engineers must go directly into the line and perform maintenance work. This paper emphasizes that the development of AI technology can provide innovative solutions in the semiconductor process as high-resolution image and image processing technology also develops. This study proposes a new wafer center detection method through variable thresholding. And this study introduces a method for detecting the center that is less sensitive to the brightness of LEDs by utilizing a high-performance object detection model such as YOLOv8 without relying on existing algorithms. Through this, we aim to enable precise wafer focus detection using artificial intelligence.

  • PDF