• Title/Summary/Keyword: Algorithms

Search Result 16,541, Processing Time 0.047 seconds

Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face (터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안)

  • Chuyen Pham;Hyu-Soung Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.508-518
    • /
    • 2023
  • This paper presents a new approach for the automatic mapping of discontinuities in a tunnel face based on its 3D digital model reconstructed by LiDAR scan or photogrammetry techniques. The main idea revolves around the identification of discontinuity areas in the 3D digital model of a tunnel face by segmenting its 2D projected images using a deep-learning semantic segmentation model called U-Net. The proposed deep learning model integrates various features including the projected RGB image, depth map image, and local surface properties-based images i.e., normal vector and curvature images to effectively segment areas of discontinuity in the images. Subsequently, the segmentation results are projected back onto the 3D model using depth maps and projection matrices to obtain an accurate representation of the location and extent of discontinuities within the 3D space. The performance of the segmentation model is evaluated by comparing the segmented results with their corresponding ground truths, which demonstrates the high accuracy of segmentation results with the intersection-over-union metric of approximately 0.8. Despite still being limited in training data, this method exhibits promising potential to address the limitations of conventional approaches, which only rely on normal vectors and unsupervised machine learning algorithms for grouping points in the 3D model into distinct sets of discontinuities.

Mean Teacher Learning Structure Optimization for Semantic Segmentation of Crack Detection (균열 탐지의 의미론적 분할을 위한 Mean Teacher 학습 구조 최적화 )

  • Seungbo Shim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.113-119
    • /
    • 2023
  • Most infrastructure structures were completed during periods of economic growth. The number of infrastructure structures reaching their lifespan is increasing, and the proportion of old structures is gradually increasing. The functions and performance of these structures at the time of design may deteriorate and may even lead to safety accidents. To prevent this repercussion, accurate inspection and appropriate repair are requisite. To this end, demand is increasing for computer vision and deep learning technology to accurately detect even minute cracks. However, deep learning algorithms require a large number of training data. In particular, label images indicating the location of cracks in the image are required. To secure a large number of those label images, a lot of labor and time are consumed. To reduce these costs as well as increase detection accuracy, this study proposed a learning structure based on mean teacher method. This learning structure was trained on a dataset of 900 labeled image dataset and 3000 unlabeled image dataset. The crack detection network model was evaluated on over 300 labeled image dataset, and the detection accuracy recorded a mean intersection over union of 89.23% and an F1 score of 89.12%. Through this experiment, it was confirmed that detection performance was improved compared to supervised learning. It is expected that this proposed method will be used in the future to reduce the cost required to secure label images.

Study on Establishment of a Monitoring System for Long-term Behavior of Caisson Quay Wall (케이슨 안벽의 장기 거동 모니터링 시스템 구축 연구 )

  • Tae-Min Lee;Sung Tae Kim;Young-Taek Kim;Jiyoung Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.40-48
    • /
    • 2023
  • In this paper, a sensor-based monitoring system was established to analyze the long-term behavioral characteristics of the caisson quay wall, a representative structural type in port facilities. Data was collected over a period of approximately 10 months. Based on existing literature, anomalous behaviors of port facilities were classified, and a measurement system was selected to detect them. Monitoring systems were installed on-site to periodically collect data. The collected data was transmitted and stored on a server through LTE network. Considering the site conditions, inclinometers for measuring slope and crack meters for measuring spacing and settlement were installed. They were attached to two caissons for comparison between different caissons. The correlation among measured data, temperature, and tidal level was examined. The temperature dominated the spacing and settlement data. When the temperature changed by approximately 50 degrees, the spacing changed by 10 mm, the settlement by 2 mm, and the slope by 0.1 degrees. On the other hand, there was no clear relationship with tidal level, indicating a need for more in-depth analysis in the future. Based on the characteristics of these collected database, it will be possible to develop algorithms for detecting abnormal states in gravity-type quay walls. The acquisition and analysis of long-term data enable to evaluate the safety and usability of structures in the event of disasters and emergencies.

Survey of coastal topography using images from a single UAV (단일 UAV를 이용한 해안 지형 측량)

  • Noh, Hyoseob;Kim, Byunguk;Lee, Minjae;Park, Yong Sung;Bang, Ki Young;Yoo, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1027-1036
    • /
    • 2023
  • Coastal topographic information is crucial in coastal management, but point measurment based approeaches, which are labor intensive, are generally applied to land and underwater, separately. This study introduces an efficient method enabling land and undetwater surveys using an unmanned aerial vehicle (UAV). This method involves applying two different algorithms to measure the topography on land and water depth, respectively, using UAV imagery and merge them to reconstruct whole coastal digital elevation model. Acquisition of the landside terrain is achieved using the Structure-from-Motion Multi-View Stereo technique with spatial scan imagery. Independently, underwater bathymetry is retrieved by employing a depth inversion technique with a drone-acquired wave field video. After merging the two digital elevation models into a local coordinate, interpolation is performed for areas where terrain measurement is not feasible, ultimately obtaining a continuous nearshore terrain. We applied the proposed survey technique to Jangsa Beach, South Korea, and verified that detailed terrain characteristics, such as berm, can be measured. The proposed UAV-based survey method has significant efficiency in terms of time, cost, and safety compared to existing methods.

A Study on Position Correction Sign for Autonomous Driving Vehicles (자율주행 자동차를 위한 측위 보정 표지 연구)

  • Young-Jae JEON;Chul-Woo PARK;Sang-Yeon WON;Jun-Hyuk LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Autonomous driving vehicles recognize the surroundings through various sensors mounted on the vehicle and control the vehicle based on the collected information. The level of autonomous driving technology is improving due to the development of sensor technology and algorithms that process collected data, but the implementation of perfect autonomous driving technology has not been achieved. To overcome these limitations, through autonomous cooperative driving centered on infrastructure. In this study, developed a position correction sign that provides a reference for positioning of autonomous vehicles. First of all, an analysis was performed on the current status of positioning technology for autonomous driving. And measure the number of point clouds for the 1st sample consisting of two square reflective surfaces and 2nd sample that increased the vertical length of each reflective surface. Experimental results show that both primary and secondary products are installed at least 15 m apart It could be recognized as a sensor, and it was confirmed that the secondary production that increased the length of the top and bottom had a higher number of point clouds than the primary production and better expressed the shape of the facility.

Neural Network-Based Prediction of Dynamic Properties (인공신경망을 활용한 동적 물성치 산정 연구)

  • Min, Dae-Hong;Kim, YoungSeok;Kim, Sewon;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.37-46
    • /
    • 2023
  • Dynamic soil properties are essential factors for predicting the detailed behavior of the ground. However, there are limitations to gathering soil samples and performing additional experiments. In this study, we used an artificial neural network (ANN) to predict dynamic soil properties based on static soil properties. The selected static soil properties were soil cohesion, internal friction angle, porosity, specific gravity, and uniaxial compressive strength, whereas the compressional and shear wave velocities were determined for the dynamic soil properties. The Levenberg-Marquardt and Bayesian regularization methods were used to enhance the reliability of the ANN results, and the reliability associated with each optimization method was compared. The accuracy of the ANN model was represented by the coefficient of determination, which was greater than 0.9 in the training and testing phases, indicating that the proposed ANN model exhibits high reliability. Further, the reliability of the output values was verified with new input data, and the results showed high accuracy.

A Study on Pose Control for Inverted Pendulum System using PID Algorithm (PID 알고리즘을 이용한 역 진자 시스템의 자세 제어에 관한 연구)

  • Jin-Gu Kang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.400-405
    • /
    • 2023
  • Currently, inverted pendulums are being studied in many fields, including posture control of missiles, rockets, etc, and bipedal robots. In this study, the vertical posture control of the pendulum was studied by constructing a rotary inverted pendulum using a 256-pulse rotary encoder and a DC motor. In the case of nonlinear systems, complex algorithms and controllers are required, but a control method using the classic and relatively simple PID(Proportional Integral Derivation) algorithm was applied to the rotating inverted pendulum system, and a simple but desired method was studied. The rotating inverted pendulum system used in this study is a nonlinear and unstable system, and a PID controller using Microchip's dsPIC30F4013 embedded processor was designed and implemented in linear modeling. Usually, PID controllers are designed by combining one or two or more types, and have the advantage of having a simple structure compared to excellent control performance and that control gain adjustment is relatively easy compared to other controllers. In this study, the physical structure of the system was analyzed using mathematical methods and control for vertical balance of a rotating inverted pendulum was realized through modeling. In addition, the feasibility of controlling with a PID controller using a rotating inverted pendulum was verified through simulation and experiment.

Development of Hybrid Recommender System Using Review Data Mining: Kindle Store Data Analysis Case (리뷰 데이터 마이닝을 이용한 하이브리드 추천시스템 개발: Amazon Kindle Store 데이터 분석사례)

  • Yihua Zhang;Qinglong Li;Ilyoung Choi;Jaekyeong Kim
    • Information Systems Review
    • /
    • v.23 no.1
    • /
    • pp.155-172
    • /
    • 2021
  • With the recent increase in online product purchases, a recommender system that recommends products considering users' preferences has still been studied. The recommender system provides personalized product recommendation services to users. Collaborative Filtering (CF) using user ratings on products is one of the most widely used recommendation algorithms. During CF, the item-based method identifies the user's product by using ratings left on the product purchased by the user and obtains the similarity between the purchased product and the unpurchased product. CF takes a lot of time to calculate the similarity between products. In particular, it takes more time when using text-based big data such as review data of Amazon store. This paper suggests a hybrid recommendation system using a 2-phase methodology and text data mining to calculate the similarity between products easily and quickly. To this end, we collected about 980,000 online consumer ratings and review data from the online commerce store, Amazon Kinder Store. As a result of several experiments, it was confirmed that the suggested hybrid recommendation system reflecting the user's rating and review data has resulted in similar recommendation time, but higher accuracy compared to the CF-based benchmark recommender systems. Therefore, the suggested system is expected to increase the user's satisfaction and increase its sales.

A Study of Deep Learning-based Personalized Recommendation Service for Solving Online Hotel Review and Rating Mismatch Problem (온라인 호텔 리뷰와 평점 불일치 문제 해결을 위한 딥러닝 기반 개인화 추천 서비스 연구)

  • Qinglong Li;Shibo Cui;Byunggyu Shin;Jaekyeong Kim
    • Information Systems Review
    • /
    • v.23 no.3
    • /
    • pp.51-75
    • /
    • 2021
  • Global e-commerce websites offer personalized recommendation services to gain sustainable competitiveness. Existing studies have offered personalized recommendation services using quantitative preferences such as ratings. However, offering personalized recommendation services using only quantitative data has raised the problem of decreasing recommendation performance. For example, a user gave a five-star rating but wrote a review that the user was unsatisfied with hotel service and cleanliness. In such cases, has problems where quantitative and qualitative preferences are inconsistent. Recently, a growing number of studies have considered review data simultaneously to improve the limitations of existing personalized recommendation service studies. Therefore, in this study, we identify review and rating mismatches and build a new user profile to offer personalized recommendation services. To this end, we use deep learning algorithms such as CNN, LSTM, CNN + LSTM, which have been widely used in sentiment analysis studies. And extract sentiment features from reviews and compare with quantitative preferences. To evaluate the performance of the proposed methodology in this study, we collect user preference information using real-world hotel data from the world's largest travel platform TripAdvisor. Experiments show that the proposed methodology in this study outperforms the existing other methodologies, using only existing quantitative preferences.

Development of Parallel Signal Processing Algorithm for FMCW LiDAR based on FPGA (FPGA 고속병렬처리 구조의 FMCW LiDAR 신호처리 알고리즘 개발)

  • Jong-Heon Lee;Ji-Eun Choi;Jong-Pil La
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.335-343
    • /
    • 2024
  • Real-time target signal processing techniques for FMCW LiDAR are described in this paper. FMCW LiDAR is gaining attention as the next-generation LiDAR for self-driving cars because of its detection robustness even in adverse environmental conditions such as rain, snow and fog etc. in addition to its long range measurement capability. The hardware architecture which is required for high-speed data acquisition, data transfer, and parallel signal processing for frequency-domain signal processing is described in this article. Fourier transformation of the acquired time-domain signal is implemented on FPGA in real time. The paper also details the C-FAR algorithm for ensuring robust target detection from the transformed target spectrum. This paper elaborates on enhancing frequency measurement resolution from the target spectrum and converting them into range and velocity data. The 3D image was generated and displayed using the 2D scanner position and target distance data. Real-time target signal processing and high-resolution image acquisition capability of FMCW LiDAR by using the proposed parallel signal processing algorithms based on FPGA architecture are verified in this paper.