• 제목/요약/키워드: Algorithm decomposition

검색결과 789건 처리시간 0.023초

청소 로봇을 위한 특징점 맵 기반의 전 영역 청소 알고리즘 (Feature Map Based Complete Coverage Algorithm for a Robotic Vacuum Cleaner)

  • 백상훈;이태경;오세영;주광로
    • 한국지능시스템학회논문지
    • /
    • 제20권1호
    • /
    • pp.81-87
    • /
    • 2010
  • 청소 로봇의 중요한 기술 중 하나는 커버리지 성능이다. 대부분의 가정용 청소 로봇들은 로봇의 크기나 제작 비용 때문에 로봇을 구성하는 시스템 구성에 제약을 받게 된다. 이러한 이유 때문에 청소 로봇의 가장 중요한 요소인 커버리지 성능을 높이는데 필요한, 위치 인식이나 맵 구성을 위한 기존의 알고리즘들을 쉽게 적용할 수가 없다. 본 논문에서는 청소 로봇을 위한 두 가지 문제에 초점을 맞추어 이를 해결 할 수 있는 방안을 제시한다. 먼저 계산 량을 줄여 저가형 시스템을 구성할 수 있어야 한다. 이를 위해 청소 환경을 단순화 하는 형태로 변화 시켜 위치 인식과 특징점 맵을 구성하는데 필요한 계산량을 줄이는 방법을 제안한다. 두 번째로 청소로봇에 사용하는 센서들의 성능이 매우 제한적이다. 청소 로봇에 가장 많이 사용되는 센서는 초음파 센서와 적외선 센서이다. 초음파 센서의 경우에는 로봇의 크기나 구조적인 문제 때문에 측정 범위가 제한되고, 적외선의 경우엔 비용 문제와 센서 자체가 가지고 있는 측정 범위에 대한 문제에 의해 근거리 측정용 센서만을 사용한다. 이러한 센서들의 성능을 고려한 특징점 추출 방법을 설명하고 이를 이용한 맵 구성과 청소 영역 분할에 대한 방법을 제안한다. 본 논문에서 제안된 전 영역 청소를 위한 알고리즘들은 실제 판매되는 청소 로봇에 적용하여, 그 성능을 검증한다.

동적 양전자방출단층 영상 분석을 위한 소프트웨어 개발: DIA Tool (Software Development for Dynamic Positron Emission Tomography : Dynamic Image Analysis (DIA) Tool)

  • 편도영;김정수;정영진
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제39권3호
    • /
    • pp.369-376
    • /
    • 2016
  • 양전자방출단영상(Positron Emission Tomography, PET)은 여러 화합물과 방사성 동위원소를 결합하여 인체 내에 주입하여 인체 내의 대사율을 정량적으로 측정할 수 있는 핵의학적 검사이다. 특히, 암 조직에서 포도당 대사가 증가되는 현상을 $^{18}F$-FDG(Fluorodeoxyglucose)를 사용하여 널리 암 진단에 활용하며, 현대에서 발병 빈도가 높은 뇌질환 중 치매 및 파킨슨 진단에도 높은 유용성을 보인다는 연구가 다수 진행되었다. 이러한 현재의 정적 정보에 시간의 동적 정보를 포함하는 동적 양전자방출단층영상(dynamic PET, dPET)을 이용할 경우, 진단을 위한 추가적인 정보가 제공되므로 진단의 정확도 향상에 기여할 수 있다. 이러한 이유로 임상 연구자 및 방사선사의 큰 관심을 받고 있으나 연구를 진행하기 위해 손쉽게 사용 가능한 도구가 부족한 실정이며, 다양하고 복잡한 수학적 알고리즘(algorithm)이나 프로그래밍(programming) 기술이 부족할 경우 연구의 활성화를 방해하는 높은 진입장벽으로 존재하게 되므로, 본 연구에서는 dPET 연구의 활성화와 손쉬운 사용을 위해서 MATLAB을 이용하여 그래픽 유저(GUI) 기반으로 하여 무료 소프트웨어를 개발하였으며, 개발된 소프트웨어인 DIA-Tool(Dynamic Image analysis-Tool)은 복잡한 수학적 영상 분석 알고리즘을 누구나 손쉽게 사용할 수 있도록 설계되었다. 향후, 많은 임상 연구자들이 DIA-Tool을 이용하여 국내의 dPET 연구 발전에 큰 도움이 될 것이라 기대된다.

강체-유체 충격문제에 대한 Lagrangian 유한요소 해석 (Lagrangian Finite Element Analysis of Water Impact Problem)

  • 윤범상
    • 대한조선학회논문집
    • /
    • 제28권1호
    • /
    • pp.60-68
    • /
    • 1991
  • 비압축성 유체유동에 대한 Navier-Stokes 방정식과 충돌 접촉면 조건으로 특징지어지는 강체-유체 충돌문제를 Lagrangian 유한요소법에 의해 해석하였으며, 계산의 편의상, 속도장을 점성및 중력항과 압력항으로 나누어 수행하는 소위 fractional step method를 도입하였다. 유체영역은 4절점의 4각형 요소로 분할하였으며, 충분히 작은 시간간격의 도입을 전제로 하여 explicit time marching법으로 수치해석하였다. 매 시간 step의 초기에 우선 운동량-충격량 법칙으로 강체의 수면충돌후 속도를 구했으며, 그 속도로 표현되는 충돌 접촉면의 경계조건과 완전한 형태의 자유표면조건 그리고 운동방정식 및 연속 방정식을 모두 만족하는 속도장을 구하였다. 본 논문에서 제시하는 수치해석법에 의하면, 유체충격문제에 있어 매우 중요하다고 알려져 있는 tip splash를 포함하는 자유표면의 형상을 쉽게 추적해 갈 수 있다. Lagrangian 유한요소법의 적용의 타당성을 확인하기 위하여 대칭형 2차원 쐐기 모양의 강체가 수면충돌하는 경우를 예로하여 시간의 경과에 따른 충격수압의 분포 및 충격외력 등을 추정한 결과, 본 방법의 적용의 유효성과 아울러 몇가지 유용한 결론을 유도할 수 있었다.

  • PDF

한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성 (Korean Sentence Generation Using Phoneme-Level LSTM Language Model)

  • 안성만;정여진;이재준;양지헌
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.71-88
    • /
    • 2017
  • 언어모델은 순차적으로 입력된 자료를 바탕으로 다음에 나올 단어나 문자를 예측하는 모델로 언어처리나 음성인식 분야에 활용된다. 최근 딥러닝 알고리즘이 발전되면서 입력 개체 간의 의존성을 효과적으로 반영할 수 있는 순환신경망 모델과 이를 발전시킨 Long short-term memory(LSTM) 모델이 언어모델에 사용되고 있다. 이러한 모형에 자료를 입력하기 위해서는 문장을 단어 혹은 형태소로 분해하는 과정을 거친 후 단어 레벨 혹은 형태소 레벨의 모형을 사용하는 것이 일반적이다. 하지만 이러한 모형은 텍스트가 포함하는 단어나 형태소의 수가 일반적으로 매우 많기 때문에 사전 크기가 커지게 되고 이에 따라 모형의 복잡도가 증가하는 문제가 있고 사전에 포함된 어휘 외에는 생성이 불가능하다는 등의 단점이 있다. 특히 한국어와 같이 형태소 활용이 다양한 언어의 경우 형태소 분석기를 통한 분해과정에서 오류가 더해질 수 있다. 이를 보완하기 위해 본 논문에서는 문장을 자음과 모음으로 이루어진 음소 단위로 분해한 뒤 입력 데이터로 사용하는 음소 레벨의 LSTM 언어모델을 제안한다. 본 논문에서는 LSTM layer를 3개 또는 4개 포함하는 모형을 사용한다. 모형의 최적화를 위해 Stochastic Gradient 알고리즘과 이를 개선시킨 다양한 알고리즘을 사용하고 그 성능을 비교한다. 구약성경 텍스트를 사용하여 실험을 진행하였고 모든 실험은 Theano를 기반으로 하는 Keras 패키지를 사용하여 수행되었다. 모형의 정량적 비교를 위해 validation loss와 test set에 대한 perplexity를 계산하였다. 그 결과 Stochastic Gradient 알고리즘이 상대적으로 큰 validation loss와 perplexity를 나타냈고 나머지 최적화 알고리즘들은 유사한 값들을 보이며 비슷한 수준의 모형 복잡도를 나타냈다. Layer 4개인 모형이 3개인 모형에 비해 학습시간이 평균적으로 69% 정도 길게 소요되었으나 정량지표는 크게 개선되지 않거나 특정 조건에서는 오히려 악화되는 것으로 나타났다. 하지만 layer 4개를 사용한 모형이 3개를 사용한 모형에 비해 완성도가 높은 문장을 생성했다. 본 논문에서 고려한 어떤 시뮬레이션 조건에서도 한글에서 사용되지 않는 문자조합이 생성되지 않았고 명사와 조사의 조합이나 동사의 활용, 주어 동사의 결합 면에서 상당히 완성도 높은 문장이 발생되었다. 본 연구결과는 현재 대두되고 있는 인공지능 시스템의 기초가 되는 언어처리나 음성인식 분야에서 한국어 처리를 위해 다양하게 활용될 수 있을 것으로 기대된다.

선택적 주의집중 Hough 변환과 신경망을 이용한 얼굴 검출 (Face Detection Using A Selectively Attentional Hough Transform and Neural Network)

  • 최일;서정익;진성일
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.93-101
    • /
    • 2004
  • 머리가 포함된 얼굴 윤곽선은 5차원의 매개변수들을 가지는 타원 형태와 유사하다. 이 특성은 타원 검출 알고리듬을 얼굴검출 방법에 이용할 수 있도록 한다. 그렇지만 허프 변환으로 5 차원의 매개변수 공간을 구축하기에는 매우 어렵다. 본 논문에서는 선택적 주의집중을 가지는 허프 변환 방법으로 주어진 영상에서 대칭 윤곽선을 가지는 얼굴을 검출하는 방법을 제안한다. 이 방법은 고정된 얼굴의 장단 비율, 그래디언트 정보, 주사선 기반 선택적 방향 분해를 이용하여, 5 차원의 매개변수 공간을 타원의 중심과 특정한 회전 방향을 추정하는 2 차원의 매개변수 공간과 단축의 길이를 추정하는 1 차원의 매개변수 공간으로 분해가 가능하도록 한다. 부가적으로 이 방법에 그래디언트와 지리적인 정보를 결합하는 두 점 선택 제약 조건을 적용하여 복잡한 배경을 가지는 영상에서 허프 변환의 속도를 증대시킨다. 제안하는 허프 변환으로 추출된 후보 얼굴 영역들 가운데에서 얼굴이 아닌 타원 영역들을 다층 퍼셉트론으로 기각시켜 얼굴을 최종적으로 검출한다. 본 논문에서 제안하는 얼굴 검출 방법을 얼굴이 포함된 다양한 영상들에 적용하여 실험한 결과로부터, 제안하는 방법은 처리 속도와 효율성에서 우수함을 확인하였다.

인체의 위 조직 시료에서 자기공명영상장치를 이용한 확산계수 측정에 대한 기초 연구 (Ex Vivo MR Diffusion Coefficient Measurement of Human Gastric Tissue)

  • 문치웅;최기승;;;양영일;장희경;은충기
    • 대한의용생체공학회:의공학회지
    • /
    • 제27권5호
    • /
    • pp.203-209
    • /
    • 2006
  • The aim of this study is to investigate the feasibility of ex vivo MR diffusion tensor imaging technique in order to observe the diffusion-contrast characteristics of human gastric tissues. On normal and pathologic gastric tissues, which have been fixed in a polycarbonate plastic tube filled with 10% formalin solution, laboratory made 3D diffusion tensor Turbo FLASH pulse sequence was used to obtain high resolution MR images with voxel size of $0.5{\times}0.5{\times}0.5mm^3\;using\;64{\times}32{\times}32mm^3$ field of view in conjunction with an acquisition matrix of $128{\times}64{\times}64$. Diffusion weighted- gradient pulses were employed with b values of 0 and $600s/mm^2$ in 6 orientations. The sequence was implemented on a clinical 3.0-T MRI scanner(Siemens, Erlangen, Germany) with a home-made quadrature-typed birdcage Tx/Rx rf coil for small specimen. Diffusion tensor values in each pixel were calculated using linear algebra and singular value decomposition(SVD) algorithm. Apparent diffusion coefficient(ADC) and fractional anisotropy(FA) map were also obtained from diffusion tensor data to compare pixel intensities between normal and abnormal gastric tissues. The processing software was developed by authors using Visual C++(Microsoft, WA, U.S.A.) and mathematical/statistical library of GNUwin32(Free Software Foundation). This study shows that 3D diffusion tensor Turbo FLASH sequence is useful to resolve fine micro-structures of gastric tissue and both ADC and FA values in normal gastric tissue are higher than those in abnormal tissue. Authors expect that this study also represents another possibility of gastric carcinoma detection by visualizing diffusion characteristics of proton spins in the gastric tissues.

RDB 및 웨이블릿 예측 네트워크 기반 단일 영상을 위한 심층 학습기반 초해상도 기법 (Deep Learning-based SISR (Single Image Super Resolution) Method using RDB (Residual Dense Block) and Wavelet Prediction Network)

  • 응우엔 휴중;김응태
    • 방송공학회논문지
    • /
    • 제24권5호
    • /
    • pp.703-712
    • /
    • 2019
  • 단일 영상 초해상도 (Single Image Super-Resolution - SISR)기법은 카메라로 획득된 저해상도 영상에 필터 기반의 연산을 적용하여 좋은 화질의 고해상도 영상을 복원하는 과정이다. 최근에 심층 합성곱 신경망 학습의 발전에 따라 단일 영상 초해상도에 적용되는 심층 학습 기법들은 좋은 성과를 보여 주고 있다. 그 대표적인 방법으로 영상의 특징 맵 기반 웨이블릿 계수 학습을 통해 고해상도 영상을 복원하는 WaveletSRNet이 있다. 하지만 복잡한 알고리즘으로 인해 계산량이 증대되어 처리 속도가 늦고 특징 추출할 때 특징 맵을 효율적으로 활용하지 못 한다는 단점을 가지고 있다. 이를 개선하기 위해 본 논문에서는 단일 영상 초해상도 RDB-WaveletSRNet 기법을 제안한다. 제안된 기법은 잔여밀집블록(Residual Dense Block)을 사용하여 저해상도의 특징 맵을 효과적으로 추출하여 초해상도의 성능을 향상시키고 적절한 성장률을 설정하여 복잡한 계산량 문제까지 해결하였다. 또한 웨이블릿 패킷 분해를 사용하여 확대율에 맞게 웨이블릿 계수를 획득하므로 높은 확대율의 단일 영상 초해상도를 얻게 하였다. 다양한 영상에 대한 실험을 통하여, 제안하는 기법이 기존 기법보다 수행시간이 빠르며 영상 품질도 우수함을 입증하였다. 제안하는 방법은 기존 방법보다 화질은 PSNR 0.1813dB만큼 우수하며 속도는 1.17배 빠른 것을 실험을 통해 확인하였다.

자연어 처리 및 기계학습을 활용한 제조업 현장의 품질 불량 예측 방법론 (A Method for Prediction of Quality Defects in Manufacturing Using Natural Language Processing and Machine Learning)

  • 노정민;김용성
    • Journal of Platform Technology
    • /
    • 제9권3호
    • /
    • pp.52-62
    • /
    • 2021
  • 제조업 현장에서 제작 공정 수행 전 품질 불량 위험 공정을 예측하여 사전품질관리를 수행하는 것은 매우 중요한 일이다. 하지만 기존 엔지니어의 역량에 의존하는 방법은 그 제작공정의 종류와 수가 다양할수록 인적, 물리적 한계에 부딪힌다. 특히 원자력 주요기기 제작과 같이 제작공정이 매우 광범위한 도메인 영역에서는 그 한계가 더욱 명확하다. 본 논문은 제조업 현장에서 자연어 처리 및 기계학습을 활용하여 품질 불량 위험 공정을 예측하는 방법을 제시하였다. 이를 위해 실제 원자력발전소에 설치되는 주기기를 제작하는 공장에서 6년 동안 수집된 제작 기록의 텍스트 데이터를 활용하였다. 텍스트 데이터의 전처리 단계에서는 도메인 지식이 잘 반영될 수 있도록 단어사전에 Mapping 하는 방식을 적용하였고, 문장 벡터화 과정에서는 N-gram, TF-IDF, SVD를 결합한 하이브리드 알고리즘을 구성하였다. 다음으로 품질 불량 위험 공정을 분류해내는 실험에서는 k-fold 교차 검증을 적용하고 Unigram에서 누적 Trigram까지 여러 케이스로 나누어 데이터셋에 대한 객관성을 확보하였다. 또한, 분류 알고리즘으로 나이브 베이즈(NB)와 서포트 벡터 머신(SVM)을 사용하여 유의미한 결과를 확보하였다. 실험결과 최대 accuracy와 F1-score가 각각 0.7685와 0.8641로서 상당히 유효한 수준으로 나타났다. 또한, 수행해본 적이 없는 새로운 공정을 예측하여 현장 엔지니어들의 투표와의 비교를 통해서 실제 현장에 자연스럽게 적용할 수 있음을 보여주었다.

회사채 신용등급 예측을 위한 SVM 앙상블학습 (Ensemble Learning with Support Vector Machines for Bond Rating)

  • 김명종
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.29-45
    • /
    • 2012
  • 회사채 신용등급은 투자자의 입장에서는 수익률 결정의 중요한 요소이며 기업의 입장에서는 자본비용 및 기업 가치와 관련된 중요한 재무의사결정사항으로 정교한 신용등급 예측 모형의 개발은 재무 및 회계 분야에서 오랫동안 전통적인 연구 주제가 되어왔다. 그러나, 회사채 신용등급 예측 모형의 성과와 관련된 가장 중요한 문제는 등급별 데이터의 불균형 문제이다. 예측 문제에 있어서 데이터 불균형(Data imbalance) 은 사용되는 표본이 특정 범주에 편중되었을 때 나타난다. 데이터 불균형이 심화됨에 따라 범주 사이의 분류경계영역이 왜곡되므로 분류자의 학습성과가 저하되게 된다. 본 연구에서는 데이터 불균형 문제가 존재하는 다분류 문제를 효과적으로 해결하기 위한 다분류 기하평균 부스팅 기법 (Multiclass Geometric Mean-based Boosting MGM-Boost)을 제안하고자 한다. MGM-Boost 알고리즘은 부스팅 알고리즘에 기하평균 개념을 도입한 것으로 오분류된 표본에 대한 학습을 강화할 수 있으며 불균형 분포를 보이는 각 범주의 예측정확도를 동시에 고려한 학습이 가능하다는 장점이 있다. 회사채 신용등급 예측문제를 활용하여 MGM-Boost의 성과를 검증한 결과 SVM 및 AdaBoost 기법과 비교하여 통계적으로 유의적인 성과개선 효과를 보여주었으며 데이터 불균형 하에서도 벤치마킹 모형과 비교하여 견고한 학습성과를 나타냈다.