• Title/Summary/Keyword: Algorithm Learning

Search Result 4,871, Processing Time 0.034 seconds

Proposal of a new method for learning of diesel generator sounds and detecting abnormal sounds using an unsupervised deep learning algorithm

  • Hweon-Ki Jo;Song-Hyun Kim;Chang-Lak Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.506-515
    • /
    • 2023
  • This study is to find a method to learn engine sound after the start-up of a diesel generator installed in nuclear power plant with an unsupervised deep learning algorithm (CNN autoencoder) and a new method to predict the failure of a diesel generator using it. In order to learn the sound of a diesel generator with a deep learning algorithm, sound data recorded before and after the start-up of two diesel generators was used. The sound data of 20 min and 2 h were cut into 7 s, and the split sound was converted into a spectrogram image. 1200 and 7200 spectrogram images were created from sound data of 20 min and 2 h, respectively. Using two different deep learning algorithms (CNN autoencoder and binary classification), it was investigated whether the diesel generator post-start sounds were learned as normal. It was possible to accurately determine the post-start sounds as normal and the pre-start sounds as abnormal. It was also confirmed that the deep learning algorithm could detect the virtual abnormal sounds created by mixing the unusual sounds with the post-start sounds. This study showed that the unsupervised anomaly detection algorithm has a good accuracy increased about 3% with comparing to the binary classification algorithm.

Using Machine Learning Technique for Analytical Customer Loyalty

  • Mohamed M. Abbassy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.190-198
    • /
    • 2023
  • To enhance customer satisfaction for higher profits, an e-commerce sector can establish a continuous relationship and acquire new customers. Utilize machine-learning models to analyse their customer's behavioural evidence to produce their competitive advantage to the e-commerce platform by helping to improve overall satisfaction. These models will forecast customers who will churn and churn causes. Forecasts are used to build unique business strategies and services offers. This work is intended to develop a machine-learning model that can accurately forecast retainable customers of the entire e-commerce customer data. Developing predictive models classifying different imbalanced data effectively is a major challenge in collected data and machine learning algorithms. Build a machine learning model for solving class imbalance and forecast customers. The satisfaction accuracy is used for this research as evaluation metrics. This paper aims to enable to evaluate the use of different machine learning models utilized to forecast satisfaction. For this research paper are selected three analytical methods come from various classifications of learning. Classifier Selection, the efficiency of various classifiers like Random Forest, Logistic Regression, SVM, and Gradient Boosting Algorithm. Models have been used for a dataset of 8000 records of e-commerce websites and apps. Results indicate the best accuracy in determining satisfaction class with both gradient-boosting algorithm classifications. The results showed maximum accuracy compared to other algorithms, including Gradient Boosting Algorithm, Support Vector Machine Algorithm, Random Forest Algorithm, and logistic regression Algorithm. The best model developed for this paper to forecast satisfaction customers and accuracy achieve 88 %.

Character Recognition Algorithm using Accumulation Mask

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.123-128
    • /
    • 2018
  • Learning data is composed of 100 characters with 10 different fonts, and test data is composed of 10 characters with a new font that is not used for the learning data. In order to consider the variety of learning data with several different fonts, 10 learning masks are constructed by accumulating pixel values of same characters with 10 different fonts. This process eliminates minute difference of characters with different fonts. After finding maximum values of learning masks, test data is expanded by multiplying these maximum values to the test data. The algorithm calculates sum of differences of two corresponding pixel values of the expanded test data and the learning masks. The learning mask with the smallest value among these 10 calculated sums is selected as the result of the recognition process for the test data. The proposed algorithm can recognize various types of fonts, and the learning data can be modified easily by adding a new font. Also, the recognition process is easy to understand, and the algorithm makes satisfactory results for character recognition.

Multi-Channel Speech Enhancement Algorithm Using DOA-based Learning Rate Control (DOA 기반 학습률 조절을 이용한 다채널 음성개선 알고리즘)

  • Kim, Su-Hwan;Lee, Young-Jae;Kim, Young-Il;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.3 no.3
    • /
    • pp.91-98
    • /
    • 2011
  • In this paper, a multi-channel speech enhancement method using the linearly constrained minimum variance (LCMV) algorithm and a variable learning rate control is proposed. To control the learning rate for adaptive filters of the LCMV algorithm, the direction of arrival (DOA) is measured for each short-time input signal and the likelihood function of the target speech presence is estimated to control the filter learning rate. Using the likelihood measure, the learning rate is increased during the pure noise interval and decreased during the target speech interval. To optimize the parameter of the mapping function between the likelihood value and the corresponding learning rate, an exhaustive search is performed using the Bark's scale distortion (BSD) as the performance index. Experimental results show that the proposed algorithm outperforms the conventional LCMV with fixed learning rate in the BSD by around 1.5 dB.

  • PDF

Development of a teaching-learning model for effective algorithm education (효과적인 알고리즘 교육을 위한 교수-학습 모형 개발)

  • Han, Oak-Young;Kim, Jae-Hyoun
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.2
    • /
    • pp.13-22
    • /
    • 2011
  • The importance of algorithm education has been emphasized for creative problem-solving capability. Especially, algorithm teaching materials related with mathematics and science are under development to enhance logical thinking. However, there are not enough teaching-learning models applicable in the field of education. Therefore, this paper proposed a teaching-learning model for effective algorithm education. The teaching-learning model reflects two characteristics : an algorithm learning process is spiral, and algorithm education is based on logical thinking. Furthermore, a survey was conducted for students' satisfaction, and the result was a mixed teaching-learning model with PBL, SDL, and peer tutoring. Based on the proposed model, examples of classes for mathematics and science are suggested to show the feasibility of effective algorithm education.

  • PDF

Effect of Learning a Divide-and-conquer Algorithm on Creative Problem Solving (분할 정복 알고리즘 학습이 창의적 문제 해결에 미치는 효과)

  • Kim, Yoon Young;Kim, Yungsik
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.2
    • /
    • pp.9-18
    • /
    • 2013
  • In secondary education, learning a computer science subject has the purpose to improve creative problem solving ability of students by learning computational thinking and principles. In particular, learning algorithm has been emphasized for this purpose. There are studies that learning algorithm has the effect of creative problem solving based on the leading studies that learning algorithm has the effect of problem solving. However, relatively the importance of the learning algorithm can weaken, because these studies depend on creative problem solving model or special contents for creativity. So this study proves that learning algorithm has the effect of creative problem solving in the view that common problem solving and creative problem solving have the same process. For this, analogical reasoning was selected among common thinking skills and divide-and-conquer algorithm was selected among abstractive principles for analogical reasoning in sorting algorithm. The frequency which solves the search problem by using the binary search algorithm was higher than the control group learning only sequence of sorting algorithm about the experimental group learning divide-and-conquer algorithm. This result means that learning algorithm including abstractive principle like divide-and-conquer has the effect of creative problem solving by analogical reasoning.

  • PDF

Reinforcement Learning Using State Space Compression (상태 공간 압축을 이용한 강화학습)

  • Kim, Byeong-Cheon;Yun, Byeong-Ju
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.3
    • /
    • pp.633-640
    • /
    • 1999
  • Reinforcement learning performs learning through interacting with trial-and-error in dynamic environment. Therefore, in dynamic environment, reinforcement learning method like Q-learning and TD(Temporal Difference)-learning are faster in learning than the conventional stochastic learning method. However, because many of the proposed reinforcement learning algorithms are given the reinforcement value only when the learning agent has reached its goal state, most of the reinforcement algorithms converge to the optimal solution too slowly. In this paper, we present COMREL(COMpressed REinforcement Learning) algorithm for finding the shortest path fast in a maze environment, select the candidate states that can guide the shortest path in compressed maze environment, and learn only the candidate states to find the shortest path. After comparing COMREL algorithm with the already existing Q-learning and Priortized Sweeping algorithm, we could see that the learning time shortened very much.

  • PDF

A Case Study on Machine Learning Applications and Performance Improvement in Learning Algorithm (기계학습 응용 및 학습 알고리즘 성능 개선방안 사례연구)

  • Lee, Hohyun;Chung, Seung-Hyun;Choi, Eun-Jung
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.245-258
    • /
    • 2016
  • This paper aims to present the way to bring about significant results through performance improvement of learning algorithm in the research applying to machine learning. Research papers showing the results from machine learning methods were collected as data for this case study. In addition, suitable machine learning methods for each field were selected and suggested in this paper. As a result, SVM for engineering, decision-making tree algorithm for medical science, and SVM for other fields showed their efficiency in terms of their frequent use cases and classification/prediction. By analyzing cases of machine learning application, general characterization of application plans is drawn. Machine learning application has three steps: (1) data collection; (2) data learning through algorithm; and (3) significance test on algorithm. Performance is improved in each step by combining algorithm. Ways of performance improvement are classified as multiple machine learning structure modeling, $+{\alpha}$ machine learning structure modeling, and so forth.

Applying CEE (CrossEntropyError) to improve performance of Q-Learning algorithm (Q-learning 알고리즘이 성능 향상을 위한 CEE(CrossEntropyError)적용)

  • Kang, Hyun-Gu;Seo, Dong-Sung;Lee, Byeong-seok;Kang, Min-Soo
    • Korean Journal of Artificial Intelligence
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, the Q-Learning algorithm, which is one kind of reinforcement learning, is mainly used to implement artificial intelligence system in combination with deep learning. Many research is going on to improve the performance of Q-Learning. Therefore, purpose of theory try to improve the performance of Q-Learning algorithm. This Theory apply Cross Entropy Error to the loss function of Q-Learning algorithm. Since the mean squared error used in Q-Learning is difficult to measure the exact error rate, the Cross Entropy Error, known to be highly accurate, is applied to the loss function. Experimental results show that the success rate of the Mean Squared Error used in the existing reinforcement learning was about 12% and the Cross Entropy Error used in the deep learning was about 36%. The success rate was shown.

Constructing Neural Networks Using Genetic Algorithm and Learning Neural Networks Using Various Learning Algorithms (유전알고리즘을 이용한 신경망의 구성 및 다양한 학습 알고리즘을 이용한 신경망의 학습)

  • 양영순;한상민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.216-225
    • /
    • 1998
  • Although artificial neural network based on backpropagation algorithm is an excellent system simulator, it has still unsolved problems of its structure-decision and learning method. That is, we cannot find a general approach to decide the structure of the neural network and cannot train it satisfactorily because of the local optimum point which it frequently falls into. In addition, although there are many successful applications using backpropagation learning algorithm, there are few efforts to improve the learning algorithm itself. In this study, we suggest a general way to construct the hidden layer of the neural network using binary genetic algorithm and also propose the various learning methods by which the global minimum value of the teaming error can be obtained. A XOR problem and line heating problems are investigated as examples.

  • PDF