• Title/Summary/Keyword: Algorithm Evaluate

Search Result 2,695, Processing Time 0.044 seconds

A Proposal of the Real time Optimal Route Algorithm With Window mechanism (윈도우 매커니즘을 이용한 실시간 최적경로 추출 알고리즘 제안)

  • 이우용;하동문;신준호;김용득
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.737-740
    • /
    • 1999
  • This paper deals with a real time optimization algorithm within real time for DRGS(Dynamic Route Guidance System) and evaluate the algorithm. A pre-developed system offers the optimal route in using only static traffic information. In using real-time traffic information, Dynamic route guidance algorithm is needed. The serious problem in implementing it is processing time increase as nodes increase and then the real time processing is impossible. Thus, in this paper we propose the optimal route algorithm with window mechanism for the real-time processing and then evaluate the algorithms.

  • PDF

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Machining Simulation System (통합절삭 시뮬레이션 시스템용 선삭표면조도 시뮬레이션 알고리즘의 설계)

  • 장동영
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.1
    • /
    • pp.19-33
    • /
    • 1999
  • The fundamental issues to evaluate machine tools performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. This proposed algorithm could be used in the designed virtual machining system. The system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

Motion Artifact Reduction Algorithm for Interleaved MRI using Fully Data Adaptive Moving Least Squares Approximation Algorithm (완전 데이터 적응형 MLS 근사 알고리즘을 이용한 Interleaved MRI의 움직임 보정 알고리즘)

  • Nam, Haewon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • In this paper, we introduce motion artifact reduction algorithm for interleaved MRI using an advanced 3D approximation algorithm. The motion artifact framework of this paper is data corrected by post-processing with a new 3-D approximation algorithm which uses data structure for each voxel. In this study, we simulate and evaluate our algorithm using Shepp-Logan phantom and T1-MRI template for both scattered dataset and uniform dataset. We generated motion artifact using random generated motion parameters for the interleaved MRI. In simulation, we use image coregistration by SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) to estimate the motion parameters. The motion artifact correction is done with using full dataset with estimated motion parameters, as well as use only one half of the full data which is the case when the half volume is corrupted by severe movement. We evaluate using numerical metrics and visualize error images.

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Virtual Machine Tool

  • Jang, Dong-Young
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.10a
    • /
    • pp.204-208
    • /
    • 1998
  • The fundamental issues to evaluate machine tool's performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. The designed virtual machining system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

P-M Interaction Curve of the Circular Concrete Column Strengthened with CFS (CFS 보강 원형 콘크리트 기둥의 P-M 상관도)

  • 이상호;허원석;김준휘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.621-626
    • /
    • 1998
  • In this study, the analytic model of concrete column strengthened with CFS(carbon fiber sheets) for obtaining P-M interaction is presented. Firstly, an algorithm to evaluate accurate behavior of CFS is presented using laminate theory. Stress-strain model of CFS is presented based on the results of this algorithm. Secondly, an algorithm to evaluate stress-strain relationship of concrete column confined with CFS is presented. In order to evaluate the reliability of these algorithms, the results of analysis are compared with experimental data. Lastly, section analysis is performed by using constitutive equations of materials. As a result, P-M interaction curve of the column strengthened is obtained and the strengthening effects of CFs are analyzed.

  • PDF

Modified BECM(M-BECM) algorithm for all-digital high speed symbol synchronization (고속 all-digital 심볼동기 위한 modified-BECM(M-BECM) 알고리즘)

  • 이경하;김용훈;최형진
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.34-43
    • /
    • 1996
  • In this paper a simpel algorithm for all-digial high speed symbol synchronization is proposed. The proposed algorithm has a structure based on BECM (band-edge component maximization). The algorithm requires only tow samples per symbol for its operation. We analyze and evaluate performance of the proposed algorithm. Simulation results reveal that the proposed algorithm has better performance than the gardner algorithm in narrowband.

  • PDF

A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm (Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

A Study on Cell Scheduling for ABR Traffic in ATM Multiplexer (ATM 멀티플렉서에서 ABR 트랙픽을 위한 셀 스케쥴링에 관한 연구)

  • 이명환;이병호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.95-98
    • /
    • 1998
  • In this paper, we propose a cell scheduling algorithm for ABR traffic in ATM multiplexer. Proposed Algorithm can support ABR service more efficiently than existing WRR and DWRR algorithm. We evaluate the performances of proposed algorithm through computer simulation. Also, we model the VBR and the ABR traffics as ON/OFF source, and the CBR traffic as a Poisson source. And the simulation shows that proposed algorithm better performance over other cell scheduling algorithm in tem of mean cell delay time.

  • PDF

Growing Algorithm of Wavelet Neural Network (웨이블렛 신경망의 성장 알고리즘)

  • 서재용;김성주;김성현;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.57-60
    • /
    • 2001
  • In this paper, we propose growing algorithm of wavelet neural network. It is growing algorithm that adds hidden nodes using wavelet frame which approximately supports orthogonality in wavelet neural network based on wavelet theory. The result of this processing can be reduced global error and progresses performance efficiency of wavelet neural network. We apply the proposed algorithm to approximation problem and evaluate effectiveness of proposed algorithm.

  • PDF

An Analysis of Flexible Manufacturing Systems Using the Linearizer Algorithm (Linearizer 해법(解法)을 이용한 유연생산(柔軟生産) 시스템의 분석(分析))

  • Park, Yong-Jip;Kim, Seong-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.2
    • /
    • pp.57-65
    • /
    • 1986
  • In the design and operation of Flexible Manufacturing Systems (FMSs), it is useful to have a tool with which one can evaluate system's performances under various conditions. As one of such tools, this study chooses the Linearizer algorithm which uses mean value analysis (MVA). Linearizer algorithm is known to be the most accurate one among the MVA based heuristic algorithms yet developed. Though, up until now, the method is solely used to evaluate computer system's performances, this study shows that the Linearizer algorithm can be adapted for FMSs and still produces accurate solutions. Numerical examples for various classes of FMSs are presented and compared with the results from other methods and simulations.

  • PDF