정보통신 기술의 발달은 네트워크 사용자들이 손쉽게 멀티미디어 서비스를 이용할 수 있도록 했다. 이로 인해 정보통신 사업자들은 QoS(Quality of Service) 기반의 멀티미디어 서비스를 제공하는 기술을 주목하기 시작했다. IMS(IP Multimedia Subsystem)는 멀티미디어 서비스 및 응용 서비스를 제공하는 기술 중 하나로 IP 네트워크를 기반으로 하는 플랫폼이다. 최근에 주목을 받고 있는 5G 네트워크는 대규모의 용량 및 연결, 적응성, 끊김 없는 이종성, 그리고 고도의 유연성으로 표현된다. 5G로 향하는 근래의 네트워크 기술에서 급증하는 네트워크 디바이스와 서비스 이용자는 트래픽의 부하를 일으킬 수밖에 없다. 본 논문은 이러한 네트워크 트래픽의 부하를 네트워크 가상화 기술인 SDN(Software Defined Network)을 이용하여 최소화하고, 여기에 SNMP(Simple Network Management Protocol)를 이용하여 보다 더 효율적인 네트워크 관리를 하려한다. 이를 위해 SDN을 이용한 IMS 네트워크에서 이용될 동적 라우팅 알고리즘과 SNMP의 private MIB(Management Information Base)의 설계를 제안한다. 본 논문의 제안을 통해 정보통신 사업자는 보다 효율적으로 네트워크 자원을 제공 할 수 있다고 기대한다.
본 논문에서는 산업용 매니퓰레이터의 작업 성능 향상을 위하여 영상 기반의 물체 인식 방법을 제안하였다. 기존 산업용 매니퓰레이터의 경우 대부분 산업 현장에서 제공하는 정보만을 활용해 산업용 매니퓰레이터를 동작시킴으로써 작업 물체 틀어짐 등에 대한 문제를 고려하지 않고 있기에 보다 안정적인 작업을 수행하는데 있어 문제점이 발생할 수 있다. 본 연구에서 사용된 물체인식 방법은 기존의 Harris Coner 알고리즘의 인식률 향상을 위하여 HSV채널로부터 색상정보를 포함한 V채널과 배경분리가 용이한 S채널을 분리 한 뒤 이를 바탕으로 Otsu Thresholding 기법을 적용하였다. 이를 통해 작업 물체를 보다 정확하게 인식하고 만약 작업 물체가 외부요인에 의하여 정확한 위치에 놓여있지 않거나 뒤틀어져 있는 경우 신속하게 확인한 후 원활한 작업을 위해 산업용 매니퓰레이터의 동작 제어를 수행하는 것으로 실제 산업용 매니퓰레이터에 적용한 후 실험을 통하여 이를 검증하였다. 이는 실제 공장 시스템에서 갑작스런 사람의 유입 혹은 외부요인에 의한 작업 물체의 변화 등의 문제점에 대하여 강인하고 유연하게 대처하며 오류로 인한 작업공정의 중단을 사전에 방지함으로서 전체시스템 가동시간의 효율성을 증대시키는 결과를 가져올 수 있다.
본 논문은 파라미터 변화나 외란이 존재하는 환경에서 컨테이너 크레인의 트롤리 위치와 컨테이너의 흔들림을 효과적으로 제어할 수 있는 모델기반 퍼지제어기를 제안한다. 이를 위해 우선 파라미터 변화에 대응할 수 있는 모델링 기법인 T-S 퍼지모델을 구현하고, 소속함수의 파라미터를 실수코딩 유전알고리즘(RCGA)으로 조정하는 문제를 다룬다. 다음으로 퍼지모델의 각 서브시스템에 대해 LQ 제어기 법을 사용하여 서브제어기를 설계하고, 이렇게 설계된 서브제어기를 ROGA로 조정된 퍼지모델의 소속함수로 퍼지결합하여 제안하는 모델기반 퍼지제어기를 구성한다. 시뮬레이션을 통해 RCGA로 조정된 소속함수를 사용하는 퍼지모델은 컨테이너 크레인의 비선형 모델의 출력에 잘 추종하였고, 모델기반 퍼지제어기도 파라미터 변화와 외란이 존재하는 환경에서 강인한 제어를 수행하고 있음을 확인하였다.
본 연구는 감성 공학과 인공 지능 알고리즘의 하나인 퍼지 추론을 이용하여 LED 색온도 제어시스템의 체계적인 제어를 위한 퍼지 추론 기반 LED 감성 조명 시스템을 개발하고자 한다. 감성공학 영역에서 하나의 형용사 언어로 표현되는 감성과 색상과의 관계를 고려하여 감성언어를 결정하고, 인간의 뇌에서 나오는 뇌파의 파장과 색온도와의 관계를 고려하여 수업과목의 종류를 결정한다. 결정된 감성언어와 수업과목의 종류를 이용하여 RGB LED의 색온도를 조정한다. 더불어 GPS(Global Positioning System)로 위도와 경도의 정보를 이용하여 실시간으로 태양의 고도를 산출하고, 온도 및 습도센서의 정보를 이용하여 불쾌지수를 산출한다. 결과로 나온 태양의 고도와 불쾌지수의 변화에 따라 LED 조명시스템의 White LED의 조도와 RGBLED의 색온도를 조정한다. 개발된 LED 감성조명 시스템은 상황에 알맞은 분위기를 연출함으로써 학습능력과 업무능력의 효율 향상 등을 이끌어 낼 수 있을 것이다.
기술의 발전으로 다양한 부품의 개발 및 상용화는 가능 하였으나, 이에 따라 부품의 단종 주기는 단축 되었다. 이는 수천 품목 이상의 부품을 활용하여 개발하고, 장기간 운영하는 무기체계의 수리 부속 보급을 어렵게 하였으며, 무기체계 운용 가용도 저하의 주요 원인으로 작용하였다. 이러한 문제를 해결하기 위하여 미국 등은 전담 기구를 만들어 대응하고 있으며, 국내에서는 상용 부품단종 예측도구를 활용하여 단종을 예측하고 관리하고 있다. 하지만 상용 부품단종 예측도구에서 단종 정보가 제시되지 않는 부품에 대한 대응 및 관리는 부재한 실정이다. 이에 본 연구에서는 상용 부품단종 예측도구에서 제공하는 부품에 대한 정형, 비정형 빅데이터를 수집하고, 데이터 전처리 및 Embedding 과정을 거쳐, 신경망 학습 알고리즘을 적용하여, 상용 부품에 대한 단종 정보 (LC Risk, YTEOL)를 예측하는 방안을 제시하였다. 또한 제시된 모델의 예측 성능을 데이터 기술 통계량과 비교 평가 하여, 본 연구에서 제시한 학습 모델의 타당성을 검증 하였다. 결론에는 본 연구의 활용 방안과 한계점 및 발전 방향에 대하여 기술 하였다.
레이저와 카메라를 이용한 레일 마모도 측정 시스템은 정확한 마모도 측정을 위하여 레일에 조사된 레이저의 영역을 왜곡 없이 획득하고 이를 레일 단면과 정밀하게 일치시키는 과정이 매우 중요하다. 그러나 기존의 레일 마모도 측정 시스템은 빗물 등의 레일 위에 이물질이 있을 경우와 온도와 같은 측정 환경에 민감하게 반응하는 레이저의 특성으로 인하여 오차가 발생할 수 있으며 특히 외부에서 유입되는 태양광, 등과 같이 레일에 조사된 레이저와 같은 파장을 가지는 빛의 간섭에 의하여 레일에 조사된 레이저 영역 추출에 한계를 가진다. 또한, 2차원 상의 좌표 값으로 표현되는 추출된 레이저 영역을 레일단면에 맵핑시키는 과정에서 발생하는 기하학적 왜곡과 변형으로 측정 정밀도에 대한 한계가 발생하는 문제점을 가지고 있다. 본 논문에서는 레일 마모도 측정을 위하여 카메라로부터 입력되는 1메가급 해상도의 영상을 초당 480 프레임의 속도로 실시간 처리할 수 있는 DSP와 FPGA가 탑재된 고성능 영상처리보드를 개발하고 이를 기반으로 각 프레임에 대한 2D 영상 데이터를 3차원 상의 데이터로 맵핑함으로써 정밀한 레일 마모도 측정 방법을 제안하고자 한다. 획득한 영상으로부터 레일에 조사된 레이저의 영역을 정확하게 추출하기 위하여 웨이브렛 기반의 영상 알고리즘을 적용하고 2차원 상의 좌표값으로 표현된 레이저 영역을 카메라 모델과 투시 변환을 이용하여 레일의 단면에 정확하게 위치시킴으로서 ${\pm}0.5mm$ 이하의 오차범위를 가지는 고정밀 레일 마모도 측정 시스템을 개발하였다.
최근 전 세계적으로 기후변화의 영향으로 강우량이 집중되고 강우강도가 커지면서 홍수피해의 규모를 증가시키고 있다. 기존에는 관측되지 않았던 규모의 강우가 내리는가 하면 기록적으로 장기간동안 장마가 지속되기도 한다. 특히, 이러한 피해들은 아세안 국가들에 집중되고 있으며, 최근 해수면 상승, 태풍 및 집중호우로 인해 침수가 빈번히 빌생하는 등 아세안 국가 국민들 중 최소 2,000만 명이 영향을 받고 있다. 우리나라도 각종 ODA사업을 통해 국내의 홍수예경보시스템을 아세안 국가에 지원하고 있지만 통신시설이 불안정하여 중앙제어방식만으로는 한계가 있다. 따라서 본 연구에서는 한 개의 관측소에서 수위, 강우의 관측과, 홍수예측, 경보까지 한번에 가능한 관측소를 개발하기 위한 인공지능기반의 홍수예측모형을 개발하였다. 설마천의 전적비교 관측소의 2009년부터 2020년 까지 10분단위 강우와 수위관측자료를 활용하여 선행예보시간 0.5, 1, 2, 3, 6시간에 대해서 학습, 검증, 시험을 수행하였으며 인공지능알고리즘으로는 LSTM을 적용하였다. 연구결과 모든 선행예보시간에 대해 모형적합도 및 오차에서 우수한 결과를 나타냈다. 설마천과 같이 유역규모가 작고 유역경사가 커서 도달시간이 짧은 경우에는 선행예보시간 1시간은 매우 우수한 예측 결과를 나타낼 것으로 판단되며 유역의 규모나 경사에 따라 더 긴 선행예보시간도 가능할 것으로 예상된다.
2021년 7월 UNCTAD가 우리나라를 선진국으로 분류할 정도로 우리나라가 발전하는 성과가 있었다. 그러나 급변하는 글로벌 경제에 대응하기 위해서는 국내 산업생태계를 연구하여 끊임없이 변화시키고 성장을 위한 전략을 마련해야 한다. 그 중 하나가 기업간 네트워크를 강화하는 것이며, 본 연구는 기업 간 거래 데이터 구득이 가능한 자동차산업을 대상으로 공간적인 산업 네트워크를 분석하였다. 데이터는 295개의 기업 데이터(노드)와 607개의 거래 관계 데이터(링크)를 활용하였다. 기업의 주소지를 지오코딩하여 공간상 분포를 확인한 결과, 자동차산업 관련 기업은 수도권과 동남권에 집중 분포하고 있었다. 연결중심성, 매개중심성, 근접중심성, 위세중심성 등을 통해 노드의 중요도를 측정하고, 밀도, 거리, 커뮤니티 탐지, 동류성 및 이류성을 파악하여 네트워크 구조를 확인하였다. 그 결과, 4가지 노드 중요도에서 상위 15위 기업은 완성차기업 중에서는 현대자동차, 기아자동차, 한국지엠 3개의 기업이 공통적으로 포함되고, 상위 15위 기업은 주로 수도권에 입지하고 있다. 규모 면에서 연결중심성과 매개중심성은 대부분 종업원 수가 1,000명 이상인 큰 기업이고, 근접중심성과 위세중심성은 완성차기업을 제외하면 대개 종업원 수가 500명 이하인 기업이 상위 15위 안에 포함되었다. 전체적인 네트워크의 구조는 밀도는 0.01390522, 노드 간 평균거리는 3.422481로 나타났으며, 빠른탐욕알고리즘으로 커뮤니티 탐지를 실시한 결과, 최종적으로 11개의 커뮤니티가 도출되었다.
컴퓨팅 기술의 발전과 데이터를 저장할 수 있는 클라우드 환경, 그리고 스마트폰의 보급으로 인하여 많은 데이터가 생산되는 환경에서 인공지능 기술이 발전되고 있다. 이러한 인공지능 기술 중에서 딥뉴럴네트워크는 이미지 인식, 이미지 분류 등에서 탁월한 성능을 제공하고 있다. 기존에는 이러한 딥뉴럴네트워크를 이용하여 산불 및 화재 예방을 위한 이미지 탐지에 대해 많은 연구가 있었지만 흡연 탐지에 대한 연구는 미흡한 실정이었다. 한편 군 부대에서는 각종 시설에 대한 감시체계를 CCTV를 통해 구축하고 있는데 화재, 폭발사고 예방을 위해 탄약고 주변에서의 흡연이나 금연구역에서의 흡연을 CCTV로 탐지하는 것이 필요한 상황이다. 본 논문에서는 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지하는 방법에 대한 성능 분석을 하였으며 활성화함수, 학습률 등 실험적으로 최적화된 수치를 반영하여 흡연사진과 비흡연사진을 두 가지 경우로 탐지하는 것을 하였다. 실험 데이터로는 인터넷 상에 공개되어 있는 흡연 및 비흡연 사진을 크롤링하여 데이터를 구축하였으며, 실험은 머신러닝 라이브러리를 이용하였다. 실험결과로 학습률 0.004로 최적화 알고리즘 Adam을 사용하였을 때, 93%의 accuracy와 92%의 F1-score를 갖는 것을 볼 수 있었다. 또한 이로써 이미지의 연속인 CCTV 영상도 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지할 수 있음을 알 수 있었다.
Quality control (QC) to process observed time series has become more critical as the types and amount of observed data have increased along with the development of ocean observing sensors and communication technology. International ocean observing institutions have developed and operated automatic QC procedures for these observed time series. In this study, the performance of automated QC procedures proposed by U.S. IOOS (Integrated Ocean Observing System), NDBC (National Data Buy Center), and OOI (Ocean Observatory Initiative) were evaluated for observed time-series particularly from the Yellow and East China Seas by taking advantage of a confusion matrix. We focused on detecting additive outliers (AO) and temporary change outliers (TCO) based on ocean temperature observation from the Ieodo Ocean Research Station (I-ORS) in 2013. Our results present that the IOOS variability check procedure tends to classify normal data as AO or TCO. The NDBC variability check tracks outliers well but also tends to classify a lot of normal data as abnormal, particularly in the case of rapidly fluctuating time-series. The OOI procedure seems to detect the AO and TCO most effectively and the rate of classifying normal data as abnormal is also the lowest among the international checks. However, all three checks need additional scrutiny because they often fail to classify outliers when intermittent observations are performed or as a result of systematic errors, as well as tending to classify normal data as outliers in the case where there is abrupt change in the observed data due to a sensor being located within a sharp boundary between two water masses, which is a common feature in shallow water observations. Therefore, this study underlines the necessity of developing a new QC algorithm for time-series occurring in a shallow sea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.