• Title/Summary/Keyword: Algorithm Development

검색결과 7,046건 처리시간 0.032초

SDN과 SNMP를 이용한 IMS 네트워크 관리 (A Management for IMS Network Using SDN and SNMP)

  • 양우석;김정호;이재오
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.694-699
    • /
    • 2017
  • 정보통신 기술의 발달은 네트워크 사용자들이 손쉽게 멀티미디어 서비스를 이용할 수 있도록 했다. 이로 인해 정보통신 사업자들은 QoS(Quality of Service) 기반의 멀티미디어 서비스를 제공하는 기술을 주목하기 시작했다. IMS(IP Multimedia Subsystem)는 멀티미디어 서비스 및 응용 서비스를 제공하는 기술 중 하나로 IP 네트워크를 기반으로 하는 플랫폼이다. 최근에 주목을 받고 있는 5G 네트워크는 대규모의 용량 및 연결, 적응성, 끊김 없는 이종성, 그리고 고도의 유연성으로 표현된다. 5G로 향하는 근래의 네트워크 기술에서 급증하는 네트워크 디바이스와 서비스 이용자는 트래픽의 부하를 일으킬 수밖에 없다. 본 논문은 이러한 네트워크 트래픽의 부하를 네트워크 가상화 기술인 SDN(Software Defined Network)을 이용하여 최소화하고, 여기에 SNMP(Simple Network Management Protocol)를 이용하여 보다 더 효율적인 네트워크 관리를 하려한다. 이를 위해 SDN을 이용한 IMS 네트워크에서 이용될 동적 라우팅 알고리즘과 SNMP의 private MIB(Management Information Base)의 설계를 제안한다. 본 논문의 제안을 통해 정보통신 사업자는 보다 효율적으로 네트워크 자원을 제공 할 수 있다고 기대한다.

산업용 매니퓰레이터의 작업 성능 향상을 위한 영상 기반 물체 인식에 관한 연구 (Study on vision-based object recognition to improve performance of industrial manipulator)

  • 박인철;박종호;류지형;김형주;정길도
    • 한국산학기술학회논문지
    • /
    • 제18권4호
    • /
    • pp.358-365
    • /
    • 2017
  • 본 논문에서는 산업용 매니퓰레이터의 작업 성능 향상을 위하여 영상 기반의 물체 인식 방법을 제안하였다. 기존 산업용 매니퓰레이터의 경우 대부분 산업 현장에서 제공하는 정보만을 활용해 산업용 매니퓰레이터를 동작시킴으로써 작업 물체 틀어짐 등에 대한 문제를 고려하지 않고 있기에 보다 안정적인 작업을 수행하는데 있어 문제점이 발생할 수 있다. 본 연구에서 사용된 물체인식 방법은 기존의 Harris Coner 알고리즘의 인식률 향상을 위하여 HSV채널로부터 색상정보를 포함한 V채널과 배경분리가 용이한 S채널을 분리 한 뒤 이를 바탕으로 Otsu Thresholding 기법을 적용하였다. 이를 통해 작업 물체를 보다 정확하게 인식하고 만약 작업 물체가 외부요인에 의하여 정확한 위치에 놓여있지 않거나 뒤틀어져 있는 경우 신속하게 확인한 후 원활한 작업을 위해 산업용 매니퓰레이터의 동작 제어를 수행하는 것으로 실제 산업용 매니퓰레이터에 적용한 후 실험을 통하여 이를 검증하였다. 이는 실제 공장 시스템에서 갑작스런 사람의 유입 혹은 외부요인에 의한 작업 물체의 변화 등의 문제점에 대하여 강인하고 유연하게 대처하며 오류로 인한 작업공정의 중단을 사전에 방지함으로서 전체시스템 가동시간의 효율성을 증대시키는 결과를 가져올 수 있다.

컨테이너 크레인을 위한 모델기반 퍼지제어기 설계 (Design of a Model-Based Fuzzy Controller for Container Cranes)

  • 이수룡;이윤형;안종갑;손정기;최재준;소명옥
    • 한국항해항만학회지
    • /
    • 제32권6호
    • /
    • pp.459-464
    • /
    • 2008
  • 본 논문은 파라미터 변화나 외란이 존재하는 환경에서 컨테이너 크레인의 트롤리 위치와 컨테이너의 흔들림을 효과적으로 제어할 수 있는 모델기반 퍼지제어기를 제안한다. 이를 위해 우선 파라미터 변화에 대응할 수 있는 모델링 기법인 T-S 퍼지모델을 구현하고, 소속함수의 파라미터를 실수코딩 유전알고리즘(RCGA)으로 조정하는 문제를 다룬다. 다음으로 퍼지모델의 각 서브시스템에 대해 LQ 제어기 법을 사용하여 서브제어기를 설계하고, 이렇게 설계된 서브제어기를 ROGA로 조정된 퍼지모델의 소속함수로 퍼지결합하여 제안하는 모델기반 퍼지제어기를 구성한다. 시뮬레이션을 통해 RCGA로 조정된 소속함수를 사용하는 퍼지모델은 컨테이너 크레인의 비선형 모델의 출력에 잘 추종하였고, 모델기반 퍼지제어기도 파라미터 변화와 외란이 존재하는 환경에서 강인한 제어를 수행하고 있음을 확인하였다.

지능형 알고리즘 기반 RGBW Dimming control LED 감성조명 시스템 개발 (Development of RGBW Dimming Control Sensitivity Lighting System based on the Intelligence Algorithm)

  • 오성권;임승준;마창민;김진율
    • 한국지능시스템학회논문지
    • /
    • 제21권3호
    • /
    • pp.359-364
    • /
    • 2011
  • 본 연구는 감성 공학과 인공 지능 알고리즘의 하나인 퍼지 추론을 이용하여 LED 색온도 제어시스템의 체계적인 제어를 위한 퍼지 추론 기반 LED 감성 조명 시스템을 개발하고자 한다. 감성공학 영역에서 하나의 형용사 언어로 표현되는 감성과 색상과의 관계를 고려하여 감성언어를 결정하고, 인간의 뇌에서 나오는 뇌파의 파장과 색온도와의 관계를 고려하여 수업과목의 종류를 결정한다. 결정된 감성언어와 수업과목의 종류를 이용하여 RGB LED의 색온도를 조정한다. 더불어 GPS(Global Positioning System)로 위도와 경도의 정보를 이용하여 실시간으로 태양의 고도를 산출하고, 온도 및 습도센서의 정보를 이용하여 불쾌지수를 산출한다. 결과로 나온 태양의 고도와 불쾌지수의 변화에 따라 LED 조명시스템의 White LED의 조도와 RGBLED의 색온도를 조정한다. 개발된 LED 감성조명 시스템은 상황에 알맞은 분위기를 연출함으로써 학습능력과 업무능력의 효율 향상 등을 이끌어 낼 수 있을 것이다.

상용 부품 비정형 데이터와 인공 신경망을 이용한 부품 단종 예측 방안 연구 (Study on predicting the commercial parts discontinuance using unstructured data and artificial neural network)

  • 박연경;이익도;이강택;김두정
    • 한국산학기술학회논문지
    • /
    • 제20권10호
    • /
    • pp.277-283
    • /
    • 2019
  • 기술의 발전으로 다양한 부품의 개발 및 상용화는 가능 하였으나, 이에 따라 부품의 단종 주기는 단축 되었다. 이는 수천 품목 이상의 부품을 활용하여 개발하고, 장기간 운영하는 무기체계의 수리 부속 보급을 어렵게 하였으며, 무기체계 운용 가용도 저하의 주요 원인으로 작용하였다. 이러한 문제를 해결하기 위하여 미국 등은 전담 기구를 만들어 대응하고 있으며, 국내에서는 상용 부품단종 예측도구를 활용하여 단종을 예측하고 관리하고 있다. 하지만 상용 부품단종 예측도구에서 단종 정보가 제시되지 않는 부품에 대한 대응 및 관리는 부재한 실정이다. 이에 본 연구에서는 상용 부품단종 예측도구에서 제공하는 부품에 대한 정형, 비정형 빅데이터를 수집하고, 데이터 전처리 및 Embedding 과정을 거쳐, 신경망 학습 알고리즘을 적용하여, 상용 부품에 대한 단종 정보 (LC Risk, YTEOL)를 예측하는 방안을 제시하였다. 또한 제시된 모델의 예측 성능을 데이터 기술 통계량과 비교 평가 하여, 본 연구에서 제시한 학습 모델의 타당성을 검증 하였다. 결론에는 본 연구의 활용 방안과 한계점 및 발전 방향에 대하여 기술 하였다.

카메라 모델과 투시 변환에 의한 레일 마모도 측정 시스템 개발 (Development of the Railway Abrasion Measurement System using Camera Model and Perspective Transformation)

  • 안성혁;강동은;문형득;박소연;김만철
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1069-1077
    • /
    • 2008
  • 레이저와 카메라를 이용한 레일 마모도 측정 시스템은 정확한 마모도 측정을 위하여 레일에 조사된 레이저의 영역을 왜곡 없이 획득하고 이를 레일 단면과 정밀하게 일치시키는 과정이 매우 중요하다. 그러나 기존의 레일 마모도 측정 시스템은 빗물 등의 레일 위에 이물질이 있을 경우와 온도와 같은 측정 환경에 민감하게 반응하는 레이저의 특성으로 인하여 오차가 발생할 수 있으며 특히 외부에서 유입되는 태양광, 등과 같이 레일에 조사된 레이저와 같은 파장을 가지는 빛의 간섭에 의하여 레일에 조사된 레이저 영역 추출에 한계를 가진다. 또한, 2차원 상의 좌표 값으로 표현되는 추출된 레이저 영역을 레일단면에 맵핑시키는 과정에서 발생하는 기하학적 왜곡과 변형으로 측정 정밀도에 대한 한계가 발생하는 문제점을 가지고 있다. 본 논문에서는 레일 마모도 측정을 위하여 카메라로부터 입력되는 1메가급 해상도의 영상을 초당 480 프레임의 속도로 실시간 처리할 수 있는 DSP와 FPGA가 탑재된 고성능 영상처리보드를 개발하고 이를 기반으로 각 프레임에 대한 2D 영상 데이터를 3차원 상의 데이터로 맵핑함으로써 정밀한 레일 마모도 측정 방법을 제안하고자 한다. 획득한 영상으로부터 레일에 조사된 레이저의 영역을 정확하게 추출하기 위하여 웨이브렛 기반의 영상 알고리즘을 적용하고 2차원 상의 좌표값으로 표현된 레이저 영역을 카메라 모델과 투시 변환을 이용하여 레일의 단면에 정확하게 위치시킴으로서 ${\pm}0.5mm$ 이하의 오차범위를 가지는 고정밀 레일 마모도 측정 시스템을 개발하였다.

  • PDF

독립적 자체경보가 가능한 인공지능기반 하천홍수위예측 모형개발 (Development of artificial intelligence-based river flood level prediction model capable of independent self-warning)

  • 김수영;김형준;윤광석
    • 한국수자원학회논문집
    • /
    • 제54권12호
    • /
    • pp.1285-1294
    • /
    • 2021
  • 최근 전 세계적으로 기후변화의 영향으로 강우량이 집중되고 강우강도가 커지면서 홍수피해의 규모를 증가시키고 있다. 기존에는 관측되지 않았던 규모의 강우가 내리는가 하면 기록적으로 장기간동안 장마가 지속되기도 한다. 특히, 이러한 피해들은 아세안 국가들에 집중되고 있으며, 최근 해수면 상승, 태풍 및 집중호우로 인해 침수가 빈번히 빌생하는 등 아세안 국가 국민들 중 최소 2,000만 명이 영향을 받고 있다. 우리나라도 각종 ODA사업을 통해 국내의 홍수예경보시스템을 아세안 국가에 지원하고 있지만 통신시설이 불안정하여 중앙제어방식만으로는 한계가 있다. 따라서 본 연구에서는 한 개의 관측소에서 수위, 강우의 관측과, 홍수예측, 경보까지 한번에 가능한 관측소를 개발하기 위한 인공지능기반의 홍수예측모형을 개발하였다. 설마천의 전적비교 관측소의 2009년부터 2020년 까지 10분단위 강우와 수위관측자료를 활용하여 선행예보시간 0.5, 1, 2, 3, 6시간에 대해서 학습, 검증, 시험을 수행하였으며 인공지능알고리즘으로는 LSTM을 적용하였다. 연구결과 모든 선행예보시간에 대해 모형적합도 및 오차에서 우수한 결과를 나타냈다. 설마천과 같이 유역규모가 작고 유역경사가 커서 도달시간이 짧은 경우에는 선행예보시간 1시간은 매우 우수한 예측 결과를 나타낼 것으로 판단되며 유역의 규모나 경사에 따라 더 긴 선행예보시간도 가능할 것으로 예상된다.

한국 자동차산업의 기업간 거래관계에 의한 지리적 네트워크 구조 분석 (Analysis of Geographic Network Structure by Business Relationship between Companies of the Korean Automobile Industry)

  • 김혜림;문태헌
    • 한국지리정보학회지
    • /
    • 제24권3호
    • /
    • pp.58-72
    • /
    • 2021
  • 2021년 7월 UNCTAD가 우리나라를 선진국으로 분류할 정도로 우리나라가 발전하는 성과가 있었다. 그러나 급변하는 글로벌 경제에 대응하기 위해서는 국내 산업생태계를 연구하여 끊임없이 변화시키고 성장을 위한 전략을 마련해야 한다. 그 중 하나가 기업간 네트워크를 강화하는 것이며, 본 연구는 기업 간 거래 데이터 구득이 가능한 자동차산업을 대상으로 공간적인 산업 네트워크를 분석하였다. 데이터는 295개의 기업 데이터(노드)와 607개의 거래 관계 데이터(링크)를 활용하였다. 기업의 주소지를 지오코딩하여 공간상 분포를 확인한 결과, 자동차산업 관련 기업은 수도권과 동남권에 집중 분포하고 있었다. 연결중심성, 매개중심성, 근접중심성, 위세중심성 등을 통해 노드의 중요도를 측정하고, 밀도, 거리, 커뮤니티 탐지, 동류성 및 이류성을 파악하여 네트워크 구조를 확인하였다. 그 결과, 4가지 노드 중요도에서 상위 15위 기업은 완성차기업 중에서는 현대자동차, 기아자동차, 한국지엠 3개의 기업이 공통적으로 포함되고, 상위 15위 기업은 주로 수도권에 입지하고 있다. 규모 면에서 연결중심성과 매개중심성은 대부분 종업원 수가 1,000명 이상인 큰 기업이고, 근접중심성과 위세중심성은 완성차기업을 제외하면 대개 종업원 수가 500명 이하인 기업이 상위 15위 안에 포함되었다. 전체적인 네트워크의 구조는 밀도는 0.01390522, 노드 간 평균거리는 3.422481로 나타났으며, 빠른탐욕알고리즘으로 커뮤니티 탐지를 실시한 결과, 최종적으로 11개의 커뮤니티가 도출되었다.

딥뉴럴네트워크 기반의 흡연 탐지기법 설계 (Design of detection method for smoking based on Deep Neural Network)

  • 이상현;윤현수;권현
    • 융합보안논문지
    • /
    • 제21권1호
    • /
    • pp.191-200
    • /
    • 2021
  • 컴퓨팅 기술의 발전과 데이터를 저장할 수 있는 클라우드 환경, 그리고 스마트폰의 보급으로 인하여 많은 데이터가 생산되는 환경에서 인공지능 기술이 발전되고 있다. 이러한 인공지능 기술 중에서 딥뉴럴네트워크는 이미지 인식, 이미지 분류 등에서 탁월한 성능을 제공하고 있다. 기존에는 이러한 딥뉴럴네트워크를 이용하여 산불 및 화재 예방을 위한 이미지 탐지에 대해 많은 연구가 있었지만 흡연 탐지에 대한 연구는 미흡한 실정이었다. 한편 군 부대에서는 각종 시설에 대한 감시체계를 CCTV를 통해 구축하고 있는데 화재, 폭발사고 예방을 위해 탄약고 주변에서의 흡연이나 금연구역에서의 흡연을 CCTV로 탐지하는 것이 필요한 상황이다. 본 논문에서는 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지하는 방법에 대한 성능 분석을 하였으며 활성화함수, 학습률 등 실험적으로 최적화된 수치를 반영하여 흡연사진과 비흡연사진을 두 가지 경우로 탐지하는 것을 하였다. 실험 데이터로는 인터넷 상에 공개되어 있는 흡연 및 비흡연 사진을 크롤링하여 데이터를 구축하였으며, 실험은 머신러닝 라이브러리를 이용하였다. 실험결과로 학습률 0.004로 최적화 알고리즘 Adam을 사용하였을 때, 93%의 accuracy와 92%의 F1-score를 갖는 것을 볼 수 있었다. 또한 이로써 이미지의 연속인 CCTV 영상도 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지할 수 있음을 알 수 있었다.

이어도 해양과학기지 수온 시계열 자료의 이상값 검출을 위한 국제 품질검사의 성능 평가 (Evaluation of International Quality Control Procedures for Detecting Outliers in Water Temperature Time-series at Ieodo Ocean Research Station)

  • 민용침;전현정;정진용;박숭환;이재익;정종민;민인기;김용선
    • Ocean and Polar Research
    • /
    • 제43권4호
    • /
    • pp.229-243
    • /
    • 2021
  • Quality control (QC) to process observed time series has become more critical as the types and amount of observed data have increased along with the development of ocean observing sensors and communication technology. International ocean observing institutions have developed and operated automatic QC procedures for these observed time series. In this study, the performance of automated QC procedures proposed by U.S. IOOS (Integrated Ocean Observing System), NDBC (National Data Buy Center), and OOI (Ocean Observatory Initiative) were evaluated for observed time-series particularly from the Yellow and East China Seas by taking advantage of a confusion matrix. We focused on detecting additive outliers (AO) and temporary change outliers (TCO) based on ocean temperature observation from the Ieodo Ocean Research Station (I-ORS) in 2013. Our results present that the IOOS variability check procedure tends to classify normal data as AO or TCO. The NDBC variability check tracks outliers well but also tends to classify a lot of normal data as abnormal, particularly in the case of rapidly fluctuating time-series. The OOI procedure seems to detect the AO and TCO most effectively and the rate of classifying normal data as abnormal is also the lowest among the international checks. However, all three checks need additional scrutiny because they often fail to classify outliers when intermittent observations are performed or as a result of systematic errors, as well as tending to classify normal data as outliers in the case where there is abrupt change in the observed data due to a sensor being located within a sharp boundary between two water masses, which is a common feature in shallow water observations. Therefore, this study underlines the necessity of developing a new QC algorithm for time-series occurring in a shallow sea.