• Title/Summary/Keyword: Algal growth potential test (AGPT)

Search Result 5, Processing Time 0.021 seconds

Application of Algal Growth Potential Test (AGPT) on the Water Quality of the Chinyang Reservoir and the Nam River (진양호와 남강의 수질에 대한 Algal Growth Potential Test (AGPT) 적용)

  • Lee, Ok-Hee;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.57-65
    • /
    • 2003
  • The algal growth potential test (AGPT) bioassay were conducted to assess the water quality and fertility in the Chinyang Reservoir and the lower part of the Nam River from August 2000 to July 2001, The AGPT value of the Chinyang Reservoir ranged from 0 to 23.4 mg dw $1^{-1}$, while 79% of the algae cultivation have not grown. The AGPT value was in proportion to phosphorus concentration of the water, and it was less when chlorophyll-a was high. This value was higher in the middle and lower layers than in the upper layer, and in the inflow part where the water is shallower than in the lacustrine. The AGPT value has increased in the whole reservoir in August${\sim}$September when the water volume is high. In contrast, the AGPT value in the Nam River varied greatly compared to that of the reservoir, and ranged from 0 to 252.0 mg dw $1^{-1}$ and 65% of the algae cultivation have grown. The value was less than 10 mg dw $1^{-1}$ in the upstream, over the point where the treated wastewater discharged. It was 57 mg dw $1^{-1}$ on the average in the downstream, except in March and July when the discharged water influenced greatly, exceeding the hypertrophic condition. The result of AGPT shows the differences in the time and space on the reservoir and the streams. The AGPT value has increased in July${\sim}$September, and in December in the inflow part of the reservoir; in March and August${\sim}$December in the lower part; and in January, May, and November in the streams. AGPT is useful not only in defining the influence of the limiting nutrients on the algal growth, but also in evaluating the nutrients fertility in the inland water.

Algal Growth Potential Test (AGPT) in Streams and Embayment of the Okchon Stream Watershed, Korea (옥천천 유역의 하천과 만곡부에서 조류 생장 잠재력 측정)

  • Sin,Jae-Gi;Kim,Dong-Seop;Lee,Hye-Geun;Maeng,Seung-Jin;Hwang,Sun-Jin
    • ALGAE
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2003
  • Algal growth potential test (AGPT) bioassay were conducted to evaluate the stream and reservoir water in the Okchon Stream Watershed during May to September 2002. The water quality of the stream water was clean in the upstream, deteriorating toward the downstream. In particular, SRP and $NH_4$ significantly increased due to treated wastewater. The average AGPT value of the Okchon Stream watershed was 22.4 mg dw ${\cdot}l^{-1}$, with the range of 0- 195.7 mg dw ${\cdot}l^{-1}$. AGPT value was the highest immediately after inflow of treated wastewater, averaging 91.3 mg dw${\cdot}l^{-1}$. AGPT was highly correlated with SRP, $NH_4$ and TIN factors, with P having the greatest effect on the growth of algae. Among N components, $NH_4$ was preferred to $NO_3$ for the growth of algae. Likewise, AGPT was closely linked to meteological and hydrological effects and development of natural phytoplankton. In survey stations, mesotrophic, eutrophic and hypertrophic conditions accounted for 43%, 21% and 36%, respectively. On the other hand, hypertrophic condition focused on the downstream reaches. AGPT was useful in determining not only the limiting nutrients but also the water fertility for the growth of algae. Based on the AGPT results, the management of point sources for water pollution in treated wastewater was important in the protection of aquatic environment in the stream and embayment.

Algal Growth Potential Test (AGPT) in the Stream- Reservoir System of the Pyeongtaek Reservoir Watershed, Korea (평택호와 유역 하천에서 조류생장잠재력측정)

  • Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.172-180
    • /
    • 2003
  • For a biological assessment of Pyeongtaek Reservoir and its major influent streams, an algal growth potential test (AGPT) was conducted with the blue-green algae Microcystis aeruginosa in March, June, September and December, 2000. The range and average value of AGPT were from 0 to 463 mg dw/l and 90 mg dw/l, respectively. For the influent streams in particular, the average of AGPT was the in the Hwangguchi Stream (343 mg dw/l). It decreased to 158, 66, 29, 21, and 21 mg dw/l in the Sojong Stream, Songhwan Stream, Osan Stream, Chinwi Stream, and Ansong Stream, respectively. The AGPT values in the reservoir ranged from 0 to 138 mg dw/1(mean 54 mg dw/1) with a tendency to increase in the upstream, which was close to the influent streams. In general, the AGPT values decreased further in the downstream. Immediately after the abrupt increase in influent discharge in summer, the AGPT value in the downstream almost doubled due to the proliferation of blue-green algae. The water quality of Pyeongtaek Reservoir and its influent streams further deteriorated during the drought period. Similarly, the AGPT value was the highest during this period. The AGPT values showed the closest correlation with the content of P (r = 0.999, p<0,001). Thus, it could be concluded that the content of P is highly effective in the growth of algae. In the Pyeongtaek Reservoir Watershed, the AGPT values varied in space and time. It was also closely related to the nutrient content of influent streams. The AGPT values revealed that the water quality state was hypertrophic (> 20 mg dw/1). Thus, control of the aquatic environment is essential. AGPT is very useful in evaluating the fertility and pollution state of the water as well as determining the nutrients that limit the growth of algae.

Comparison of Algal Growth Potentials in the Large Reservoirs and River Mainstream of Naktong River Watershed (낙동강 수계 대형 인공호 및 하천본류의 조류성장 잠재력 비교)

  • You, Kyung-A;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.138-144
    • /
    • 2006
  • Algal growth potential test (AGPT) has been used as a tool for assessing biological productivity potential in the aquatic ecosystems. This study was conducted to compare the productivity potentials of large reservoirs (Lakes Andong, Hapchon and Jinyang, and Naktong estuarine dam) and river sites (Sangju, Koryung, and Samlangjin) located in the Naktong River watershed. AGPT was conducted in both non-monsoon and mosoon season (February, April, July and September) of 2003, using Microcystis aeruginosa as a test alga. The AGPs in the reservoirs were relatively much lower than those of river sites. The river AGPs increased towards upstream close to the influent streams, while it generally decreased towards downstream. Immediately after the abrupt increase in influent discharge in summer, the AGP became similar between midstream and downstream sites. The water quality of river and reservoirs deteriorated during the drought period in accordance with AGP: it was the highest during this period. The AGPs showed the closest correlation with the P concentration, leading to the conclusion that bioavailable P is highly influential to the algal growth in both lentic and lotic ecosystems in the Naktong River watershed. Based on the AGPs, the water quality of tested sites was likely eutrophic. Our results suggest that AGPT be a useful tool in evaluating the productivity potential and trophic state of the water body as well as determining the nutrients that limit the growth of algae.

Comparison of the Fertility of Stream Waters Depending on the Drainage Systems in the Lake Shihwa Watershed, Korea (시화호 유역에서 배수시스템별 하천수의 비옥도 비교)

  • Shin, Jae-Ki;Kim, Dong-Sup;Kang, Chang-Keun;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.381-388
    • /
    • 2003
  • The fertility of stream water in major streams of the Lake Shihwa Watershed was compared using water analyses and algal growth potential test (AGPT) in typical drought seasons from December 2001 to April 2002, The water quality varied considerably depending on streams. These streams were very rich in inorganic nutrients that the nutrient levels and characteristics of each stream could be easily determined. Through AGPT, 63.6% of growth was observed in the average values of each stream, with non-growth accounting for 36.4%. AGPT results showed that 40.9% of the 22 stations were in hypertrophic condition and 54.5% in eutrophic condition. AGPT values were significantly correlated with TIN, $NH_4$, and SRP (p <0.001); compared to other nutrients, however, they were more related to SRP and $NH_4$. Moreover, the values increased with high concentration of N and P and low N/P ratios. Nonetheless, the values were more dependent on P concentration than N concentration. This suggests that the effect of P on the water quality of lake situated in downstream may serve as a potential indicator of phytoplankton development. Depending on the drainage pattern of streams, the wastewaters of wastewater treatment plant (WwTP) and untreated wastewater (UTW) were found to have 53.4% and 46.6%, respevtively, of TIN, 51.9% and 48.1% of $NH_4$, 62.9% and 37.1% of $NO_3$, 62.6% and 37.4% of SRP, and 44.1% and 55.9% of SRSi. The AGPT value was 51.1% in WwTP wastewater and 48.9% in UTW wastewater, the concentration of WwTP wastewater was slightly higher. For untreated wastewaters flowing into the constructed wetland and into the lake, TIN accounts for 43.0% and 57.0%, respectively, of nitrogen components, $NH_4$ 44.4% and 55.6%, $NO_3$ 39.6% and 60.4%, SRP 53.5% and 46.5%, and SRSi 52.3% and 47.7%, respectively. The AGPT value was 58.0% in the constructed wetland and 42.0% in Lake Shihwa; the concentration in streams flowing into the wetland was slightly higher. Therefore, Persistent and large development of phytoplankton in Lake Shihwa cannot be prevented unless a measure tophytoplankton control is implemented. This is because the concentration of nutrients in specific streams flowing into the lake is very high, even though the inflow of water is low.