• Title/Summary/Keyword: Algal Removal

Search Result 127, Processing Time 0.028 seconds

Analysis on the Runoff Reduction Efficiency of Non Point Pollutants in Animal Feeding Area Using Artificial Reservoir (인공 저류지를 이용한 축산 지역 비점오염물질 유출 저감 효율 분석)

  • Oa, Seong-Wook
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.417-423
    • /
    • 2018
  • It analyzed the efficiency of the runoff reduction of artificial reservoir by analyzing the influent and effluent of reservoir located downstream of the livestock area. Production of non point pollutants in livestock feeding areas, which is located at steep slope land, was mainly due to first flushes. Suspended Solid concentration of influent increased due to amount of rainfall, and T-P also increased over four times and 30 % of total nitrogen increased on average compared to those of dry season. While the concentration of nitrate nitrogen showed little variation, ammonia nitrogen increased over two times. The storage style nonpoint reduction facility showed the highest removal efficiency of 53 % for total phosphorus in dry weather, when the removal efficiency was 37 % for suspended solids, 10% for organic compounds, and 5 % for total nitrogen. Since algal bloom grows due to eutrophication in summer, the minus removal efficiencies of nitrogen concentration through the reservoir occurred with high frequency. Removal efficiency decreased during rainfall, showing 60 % for supended solids, and 22 % for total phosphorus. While having over nine times of capacity than the standard of non-point removal facility from Ministry of Environment, it was impounded with water during rainy season, showing not enough nonpoint removal efficiency, which indicates that maintenance is also an important factor to the nonpoint removal efficiency.

Analysis and effectiveness of biological thin Layer (Schmutzdecke) on the sand surface in slow sand filtration processes (완속여과 공정에서 표층 생물막 생성 및 제어와 원인조류 규명)

  • Kim, Seong-Su;Park, No-Suk;Kim, Chung-Hwan;Park, Jong-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.3
    • /
    • pp.289-298
    • /
    • 2008
  • Because of their simplicity, efficiency, and economy, slow sand filters are appropriate means of water treatment for small water systems. Biological activity within the sand bed have the strongest influence on removal efficiency of pollutants by slow sand filtration. This report investigated the microorganisms(algae) of slow sand filtration pilot plant at Y water treatment plant. Data were collected at inflow and slow sand filtration from May to October, 2007. The results indicated that the light exposure was influenced on microorganism in slow sand filtration according to the formation of algal biofilm. The relative contribution of biomass and accumulated particulates to head loss development in slow sand filters requires further study.

A Study for Application of DAF Technology to Remove Chrolophyl-a and Dissolved Organic Compound in Yongdam Reservoir (용담호소 내 Chlorophyl-a와 유기물 저감을 위한 부상기법 적용 연구)

  • Dockko, Seok;Lee, Hyungjib
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.303-309
    • /
    • 2006
  • Yongdam reservoir located in Jeoliabuk-do has had a lot of concerns for its algal blooming since it has started to fill water. Many water utilities near Yongdam area use reservoirs even though they have some problems with certain algae that cause tastes and odors and clog filters. In this research, dissolved air flotation (DAF) technology was examined for feasibility for removal of algae. OAF can save the capital cost for its compactness, because its hydraulic loadings (overflow rates) are 10 times higher than sedimentation, and hydraulic detention times are much shorter, typically 5 to 15 minutes. As a result of this research, PAC is effective rather than Alum to DAF for pretreatment. Higher DOC plays an important role to change zetapotential negatively to inhibit destabilization of particle to coagulation. The length of pipeline to carry pressurized water into reactor does not affect reaction.

CONTROL OF DIATOM BY PREOXIDATION AND COAGULATION IN WATER TREATMENT

  • Seo, Jeong-Mi;Kong, Dong-Soo;Ahn, Seoung-Koo;Kim, Hyun-Ook
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.45-53
    • /
    • 2006
  • Conventional coagulation is still the main treatment process for algae removal in water treatment. The coagulation efficiency can be significantly improved by the preoxidation of algae-containing water. Jar test was conducted to determine the optimal condition for the removal of diatoms, especially Cyclotella sp. by preoxidation and the subsequent coagulation. The effects of various concentration of PAC (Polyaluminum chloride) on coagulation with and without preoxidation using chlorine or potassium permanganate at different pHs (7.7 and 9.0) were evaluated. At pH 7.7, preoxidation with 2ppm $Cl_2$ followed by coagulation with 7.5 ppm PAC coagulant could reduce Cyclotella sp. concentration by 86%. At pH 9.0, preoxidation with 1 mg $KMnO_4/L$ followed by coagulation with 12.5 ppm PAC coagulant reduced Cyclotella sp. concentration by 85%. Non-linear regression was applied to determine the optimal condition. At pH 7.7 and 9.0, R was over 0.9, respectively. The pH of algal blooming water is over 9.0. Algae (diatom; Cyelotella sp.) can be controlled in the following ways: preoxidation with 1 mg $KMnO_4/L$ followed by coagulation with 12.5 ppm PAC coagulant can remove 80% algae from water. If water pH is adjusted to 7.7, it was expected that less amount of coagulant (7.5 or 10 mg PAC /L) after preoxidation ($Cl_2$ 2 ppm or $KMnO_4$ 0.33, 1 ppm) would be needed to achieve similar level of algae removal. The oxidation with 0.33ppm $KMnO_4$ followed by coagulation with 7.5 ppm PAC coagulant was preferable due to cost-effectiveness of treatment condition and color problem after treatment.

Environmentally Friendly Phytal Animal Removal for Re-use of Holdfasts of Sargassum fusiforme (Harvey) Setchell: pH and Salinity (갈조류 톳의 포복지 재활용을 위한 친환경적 해적생물 구제: pH와 염분)

  • Hwang, Eun Kyoung;Yoo, Ho Chang;Kim, Se Mi;Yoo, Hyun Il;Baek, Jae Min;Park, Chan Sun
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.306-310
    • /
    • 2014
  • The brown seaweed Sargassum fusiforme is an edible and highly valued in Korea. During the summer season, phytal organisms graze heavily on young algal blades and holdfastsof the species and substantially reduce harvestable biomass. Here, in this study, we investigated the effects of pH (range: 2~13) and salinity (range: 0~44 psu) on the removal of two major phytal animals, Caprella scaura and Gammaropsis utinomi, associated with S. fusiforme. We also examined the optimum quantum yield (Fv/Fm) of algae in the same experimental conditions to quantify the tolerance of algae to acid and salinity treatments. It was observed that the phytal animals showed more than 80% mortality at pH lower that pH 4 and the extreams of salinity (0~10 psu and 44 psu) after a 5 min of immersion. However, the quantum yield of S. fusiforme was not significantly different from controls within the pH 3~11 range, and the 0~44 psu salinity range. Precisely, if the pH and salinity conditions outside these ranges were used in comercial Sargassum culture, the removal of the animal species would be higher, but with reduced quantum yield of algae. Taken together, our study results indicated that the pH and salinity treatments could allow multiple harvests from the same holdfast of S. fusiforme.

Evaluation Methods for the Removal Efficiency of Physical Algal Removal Devices (물리적 녹조 제거 장치의 제거 효율 평가 방안)

  • Pyeol-Nim Park;Kyung-Mi Kim;Young-Cheol Cho
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.419-430
    • /
    • 2023
  • In response to the periodic occurrence of cyanobacterial blooms in Korean freshwaters, various types of cyanobacteria removal technologies are being developed and implemented. Due to the differing principles behind these technologies, it is difficult to compare and evaluate their removal efficiencies. In this study, a standardized method for evaluating cyanobacteria removal efficiency was proposed by utilizing the results of removal operations using a mobile cyanobacteria removal device in the Seohwacheon area of Daechung Reservoir. During removal operations, the decrease in chlorophyll-a (chl-a) concentration (ΔChl-a) in the working area was calculated based on the amount of collected sludge, the efficiency rate, and the concentration of chl-a. Additionally, the required working days (WD) to reduce the chl-a concentration to 1 mg/m3 in the target area was calculated based on the area of the target zone, the maximum daily working area, and the efficiency rate. A method for calculating the cyanobacteria removal capacity was proposed based on the reduction rate of chl-a concentration in the water before and after the operation, the treatment capacity of the removal technology, and the water volume of the target area. The cyanobacteria removal capacity of the mobile cyanobacteria removal device used in this study was 6.64%/day (targeting the Seohwacheon area of Daechung Reservoir, approximately 500,000 m2), which was higher compared to other physical or physicochemical cyanobacteria removal technologies (0.02~4.72%/day). Utilizing the evaluation method of cyanobacteria removal efficiency presented in this study, it will be possible to compare and evaluate the cyanobacteria removal technologies currently being applied in Korea. This method could also be used to assess the performance and efficiency of physical or physicochemical combined cyanobacteria removal techniques in the "Guidelines for the Installation and Operation of Algae Removal Facilities and the Use of Algae Removal Agents" operated by the National Institute of Environmental Research.

조류를 이용한 유기성 폐수 처리 시스템과 물벼룩 성장 조건

  • Jo, Jae-Hun;Kim, Jun-Hwi;Lee, Jeong-Seop;Yun, Seong-Myeong;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.568-571
    • /
    • 2001
  • Food wastewater eluted from the three-stage methane fermentation system developed in this lab showed high concentrations of TCOD, BOD, T-N and T-P. Because the effluent of biological filter chamber (BFC) still had high concentration of nitrogen and organic material, the effluent was treated with algal periphyton system using algae. The removal rates of COD, T-N and T-P wer 96, 98 and 91%, respectively, in this system. The grown algae could digested byy waterfleas using the ecological food chain system. Food wastewater is better than algal culture medium for growth of waterflea, Moima Macrocopa. During 12days, the individual of waterflea increased to 180 in the food wastewater containing a T-N concentration of 150 mg/ ${\ell}$.

  • PDF

Polypropylene Bundle Attached Multilayered Stigeoclonium Biofilms Cultivated in Untreated Sewage Generate High Biomass and Lipid Productivity

  • Kim, Byung-Hyuk;Kim, Dong-Ho;Choi, Jung-Woon;Kang, Zion;Cho, Dae-Hyun;Kim, Ji-Young;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1547-1554
    • /
    • 2015
  • The potential of microalgae biofuel has not been realized because of the low productivity and high costs associated with the current cultivation systems. In this study, a new low-cost and transparent attachment material was tested for cultivation of a filamentous algal strain, Stigeoclonium sp., isolated from wastewater. Initially, the different materials tested for Stigeoclonium cultivation in untreated wastewater were nylon mesh, polyethylene mesh, polypropylene bundle (PB), polycarbonate plate, and viscose rayon. Among the materials tested, PB led to a firm attachment, high biomass (53.22 g/m2, dry cell weight), and total lipid yield (5.8 g/m2) with no perceivable change in FAME profile. The Stigeoclonium-dominated biofilm consisted of bacteria and extracellular polysaccharide, which helped in biofilm formation and for effective wastewater treatment (viz., removal efficiency of total nitrogen and total phosphorus corresponded to ~38% and ~90%, respectively). PB also demonstrated high yields under multilayered cultivation in a single reactor treating wastewater. Hence, this system has several advantages over traditional suspended and attached systems, with possibility of increasing areal productivity three times using Stigeoclonium sp. Therefore, multilayered attached growth algal cultivation systems seem to be the future cultivation model for large-scale biodiesel production and wastewater treatment.

Control Effect of Dinoflagellate Bloom by Powder of Marine Rock and Fungus Culture Supernatant (해양암석 분말과 곰팡이 배양액에 의한 적조생물 편조류의 구제효과)

  • Hyun, Sung-Hee;Shin, Hyun-Woung
    • Korean Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.7-11
    • /
    • 2006
  • To see effect of marine rock powder and fungal culture supernatant, we analyzed the biodegradation rates of harmful marine dinoflagellate, Heterosigma akashiwo and Prorocentrum minimum for developing the effective control methodology of algal bloom. Relatively low removal rates were observed in the treatment of marine rock powder or buffer solution alone. However, the lysis of H. akashiwo and P. minimum was enhanced in the combined treatments of marine rock powder with fungal supernatant. The effective concentration and exposure time of fungal supernatant for the lysis of H. akashiwo and P. minimum were 5 ml/l and 30 minutes, respectively. These results suggest that the fungal supernatant may be a biocontrol agent for the control of algal blooms in seawater.

The Fractionation Characteristics of BOD in Streams (하천에서 BOD 존재형태별 분포 특성)

  • Kim, Ho-Sub;Oh, Seung-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.2
    • /
    • pp.92-102
    • /
    • 2021
  • In this study, the distribution characteristics according to the type of BOD and the effect of nitrogenous oxygen demand (NOD) and algal oxygen demand on BOD in three streams (Bokhacheon, Byeongseongcheon, and Gulpocheon) were evaluated. Although the BOD and NOD concentrations demonstrated a difference in the three streams, the carbonaceous BOD(CBOD)/BOD ratio was 0.75 (p=0.053, one-way ANOVA), and there was no significant difference in the three streams (r2≥0.92, p<0.0001). The NOD concentration of the Bokhacheon with high NH3-N was 1.7±1.3 mg/L, which was the highest among the three streams and showed a significant correlation with BOD. Seasonal variations in NOD in the three streams did not show a significant correlation with changes in NH3-N concentration (r2<0.28, p≥0.1789), and there was no significant difference in NOD even though NH3-N concentration in Gulpocheon was about twice that of Byeongseongcheon (p=0.870, one way ANOVA). The particulate CBOD(PCBOD)/CBOD ratio of the three streams was 0.55~0.64, and about 60% of the biodegradable organic matter was present in the particulate form. When the Chl.a concentration in the stream was more than 7 ㎍/L, the PCBOD tended to increase with the Chl.a concentration (r2=0.61, p=0.003). In the three streams, particulate NOD accounted for 81% of NOD; however, despite the large variation in NH3-N concentration (0.075~3.182 mg/L), there was no significant difference in soluble NOD(SNOD) concentration that ranged from 0.1 to 0.3 mg/L. In this study, the low contribution rate of SNOD to NOD is considered as a result of the removal of nitrifying bacteria along with the particles during the filtration process.