• Title/Summary/Keyword: Algae bloom

Search Result 192, Processing Time 0.021 seconds

Dynamics of Phosphorus-Turbid Water Outflow and Limno-Hydrological Effects on Hypolimnetic Effluents Discharging by Hydropower Electric Generation in a Large Dam Reservoir (Daecheong), Korea (대청호 발전방류수의 인·탁수 배출 역동성과 육수·수문학적 영향)

  • Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Daecheong Reservoir was made by the construction of a large dam (>15 m in height) on the middle to downstream of the Geum River and the discharge systems have the watergate-spillway (WS), a hydropower penstock (HPP), and two intake towers. The purpose of this study was to investigate the limnological anomalies of turbid water reduction, green algae phenomenon, and oligotrophic state in the lower part of reservoir dam site, and compared with hydro-meteorological factors. Field surveys were conducted in two stations of near dam and the outlet of HPP with one week intervals from January to December 2000. Rainfall was closely related to the fluctuations of inflow, outflow and water level. The rainfall pattern was depended on the storm of monsoon and typhoon, and the increase of discharge and turbidity responded more strongly to the intensity than the frequency. Water temperature and DO fluctuations within the reservoir water layer were influenced by meteorological and hydrological events, and these were mainly caused by water level fluctuation based on temperature stratification, density current and discharge types. The discharges of WS and HPP induced to the flow of water bodies and the outflows of turbid water and nutrients such as nitrogen and phosphorus, respectively. Especially, when hypoxic or low-oxygen condition was present in the bottom water, the discharge through HPP has contributed significantly to the outflow of phosphorus released from the sediment into the downstream of dam. In addition, HPP effluent which be continuously operated throughout the year, was the main factor that could change to a low trophic level in the downreservoir (lacustrine zone). And water-bloom (green-tide) occurring in the lower part of reservoir was the result that the water body of upreservoir being transported and diffused toward the downreseroir, when discharging through the WS. Finally, the hydropower effluent was included the importance and dynamics that could have a temporal and spatial impacts on the physical, chemical and biological factors of the reservoir ecosystem.

Isolation of Marine Bacteria Killing Red Tide Microalgae I. Isolation and Algicidal Properties of Micrococcus sp. LG-1 Possessing Killing Activity for Harmful Dinoflagellate, Cochlodinium polykrikoides (적조생물 살조세균 탐색 I. 유해 적조생물 Cochlodinium Polykrikoides 살조세균 Micrococcus sp. LG-1의 분리와 살조특성)

  • PARK Young-Tae;PARK Ji-Bin;CHUNG Seong-Youn;Song Byung-Chul;LIM Wol-Ae;KIM Chang-Hoon;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.767-773
    • /
    • 1998
  • In this study, we have investigated the distributions and killing effects of marine bacteria that tend to kill the red tide microalgae, C. polykikoides in the area of Masan bay from June to October, 1996. To summarize, C. polykikoides killing bacteria were detected at $10^2$ to $10^3$ cells/ml of seawater samples during the survey period, and the bloom was observed in September by containing $4.8\times10^3$cells/ml. It appears however that the number of these bacteria is decreased ($2.0\times10^2$cells/ml) in October, A total of 110 strains were isolated from seawater samples and seawater filtrate (pore size, 0.8 $\mu$m)-containing mixed culture of C. polykikoides in which the mixed culture was grown in f/2 medium. As results we have successfully isolated Micrococcus sp. LG-1 which decreased to less than 10cells/ml within 6days and 5days sfter inoculation of Micrococcus sp. LG-1 into the la9 and logarithmic growth phases of C. polykrikoides respectively. Therefore, it appears that inoculation of Micrococcus sp. LG-1 against the logarithmic C. polykrikoides is more effective than the lag growth phase, (n addition, the killing effects were increased in accordance with bacterial cell densities inoculated in a dose dependent manner. Especially, the filtrate of kitling bacterium culture (nore size, 0.2 $\mu$m) revealed a dramatic effect in which C. polykrikoides were decreased to less than 10 cells/mf of culture within 1 hr, 1,5 hrs, 1,5 hrs, 3.5 hrs. and 5,5 hrs after inoculations of the culture filtrate with concentration of $30\%,\;20\%,\;10\%,\;5\%$ and $2.5\%$, respectively. Moreover Micrococcus sp. LG-1 showed a selective specificity against C. polykrikoides and any other killing effects of Micrococcus sp. LG-1 were not observed against Alexandrium tamarense, Prorocentrum micans, Scrippsiella trochoidea. ana Gymnodinium sanguineum.

  • PDF