• 제목/요약/키워드: Alg${\pounds}$

검색결과 1건 처리시간 0.014초

HILBERT-SCHMIDT INTERPOLATION ON AX=Y IN A TRIDIAGONAL ALGEBRA ALG${\pounds}$

  • Kang, Joo-Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제15권4호
    • /
    • pp.401-406
    • /
    • 2008
  • Given operators X and Y acting on a separable complex Hilbert space H, an interpolating operator is a bounded operator A such that AX=Y. In this article, we investigate Hilbert-Schmidt interpolation problems for operators in a tridiagonal algebra and we get the following: Let ${\pounds}$ be a subspace lattice acting on a separable complex Hilbert space H and let X=$(x_{ij})$ and Y=$(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a Hilbert-Schmidt operator $A=(a_{ij})$ in Alg${\pounds}$ such that AX=Y. (2) There is a bounded sequence $\{{\alpha}_n\}$ in $\mathbb{C}$ such that ${\sum}_{n=1}^{\infty}|{\alpha}_n|^2<{\infty}$ and $$y1_i={\alpha}_1x_{1i}+{\alpha}_2x_{2i}$$ $$y2k_i={\alpha}_{4k-1}x_2k_i$$ $$y{2k+1}_i={\alpha}_{4k}x_{2k}_i+{\alpha}_{4k+1}x_{2k+1}_i+{\alpha}_{4k+2}x_{2k+2}_i\;for\;all\;i,\;k\;\mathbb{N}$$.

  • PDF