• Title/Summary/Keyword: AlexNet

Search Result 71, Processing Time 0.027 seconds

Ensemble Learning Based on Tumor Internal and External Imaging Patch to Predict the Recurrence of Non-small Cell Lung Cancer Patients in Chest CT Image (흉부 CT 영상에서 비소세포폐암 환자의 재발 예측을 위한 종양 내외부 영상 패치 기반 앙상블 학습)

  • Lee, Ye-Sel;Cho, A-Hyun;Hong, Helen
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.373-381
    • /
    • 2021
  • In this paper, we propose a classification model based on convolutional neural network(CNN) for predicting 2-year recurrence in non-small cell lung cancer(NSCLC) patients using preoperative chest CT images. Based on the region of interest(ROI) defined as the tumor internal and external area, the input images consist of an intratumoral patch, a peritumoral patch and a peritumoral texture patch focusing on the texture information of the peritumoral patch. Each patch is trained through AlexNet pretrained on ImageNet to explore the usefulness and performance of various patches. Additionally, ensemble learning of network trained with each patch analyzes the performance of different patch combination. Compared with all results, the ensemble model with intratumoral and peritumoral patches achieved the best performance (ACC=98.28%, Sensitivity=100%, NPV=100%).

Low-end PET Waste Sorting System Using Deep Learning (딥러닝을 이용한 보급형 페트병 분리수거 시스템)

  • kim, Ku-Han;Park, Sang-Chul;Shin, Min-Seok;Seo, Seung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.333-336
    • /
    • 2022
  • 2021년에 발표된 재활용 가능 자원의 분리수거 관한 정부 지침으로 투명 페트병은 유색 플라스틱과 구분되어 분리배출하는 것이 의무화되었다. 그러나 제도가 시행된 지 반년이 지났지만, 혼합 배출률이 크게 줄지 않았고 아파트에서는 미화원들이 일일이 투명 페트병을 분리하고 있는 등 주민들의 불편함은 커지고 있다. 본 논문에서는 기존 분리수거장에 쉽게 설치 가능한 보급형 페트병 분리수거 시스템을 개발하여 분리수거 효율성을 높이고자 한다. 우리는 AlexNet, GoogleNet 알고리즘을 이용하여 딥러닝 모델을 이용하고 자체 제작한 데이터셋으로 학습시켜 하드웨어에 적용함으로써 보급형 페트병 분리수거 시스템을 설계하였다.

Processing-in-Memory Architecture for Enhanced Convolutional Neural Network Performance (합성곱 신경망 성능 향상을 위한 메모리 내 연산 구조)

  • Kun-Mo Jeong;Ho-Yun Youm;Han-Jun Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.61-64
    • /
    • 2024
  • 최근 고성능 컴퓨팅 장치의 수요 증가와 함께, 메모리 내에 연산을 가능하게 하는 하드웨어 구조가 새로이 발표되고 있다. 본 논문은 기존 DRAM 에 계산 유닛을 통합하는 새로운 메모리 내 연산 구조를 제안한다. 특히, 데이터 집약적인 합성곱 신경망 작업을 위해 최적화된 이 구조는 기존 메모리 구조를 사용하면서도 기존 구조에 분기를 추가함으로서 CNN 연산의 속도와 에너지 효율을 향상시킨다. VGG19, AlexNet, ResNet-50 과 같은 다양한 CNN 모델을 활용한 실험 결과, PINN 아키텍처는 기존 연구에 비해 최대 2.95 배까지의 성능 향상을 달성할 수 있음을 확인하였다. 이러한 결과는 PINN 기술이 저장 및 연산 성능의 한계를 극복하고, 머신 러닝과 같은 고급 어플리케이션의 요구를 충족시킬 수 있는 방안임을 시사한다.

Transfer Learning for Caladium bicolor Classification: Proof of Concept to Application Development

  • Porawat Visutsak;Xiabi Liu;Keun Ho Ryu;Naphat Bussabong;Nicha Sirikong;Preeyaphorn Intamong;Warakorn Sonnui;Siriwan Boonkerd;Jirawat Thongpiem;Maythar Poonpanit;Akarasate Homwiseswongsa;Kittipot Hirunwannapong;Chaimongkol Suksomsong;Rittikait Budrit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.126-146
    • /
    • 2024
  • Caladium bicolor is one of the most popular plants in Thailand. The original species of Caladium bicolor was found a hundred years ago. Until now, there are more than 500 species through multiplication. The classification of Caladium bicolor can be done by using its color and shape. This study aims to develop a model to classify Caladium bicolor using a transfer learning technique. This work also presents a proof of concept, GUI design, and web application deployment using the user-design-center method. We also evaluated the performance of the following pre-trained models in this work, and the results are as follow: 87.29% for AlexNet, 90.68% for GoogleNet, 93.59% for XceptionNet, 93.22% for MobileNetV2, 89.83% for RestNet18, 88.98% for RestNet50, 97.46% for RestNet101, and 94.92% for InceptionResNetV2. This work was implemented using MATLAB R2023a.

Comparison of Deep Learning-based CNN Models for Crack Detection (콘크리트 균열 탐지를 위한 딥 러닝 기반 CNN 모델 비교)

  • Seol, Dong-Hyeon;Oh, Ji-Hoon;Kim, Hong-Jin
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.113-120
    • /
    • 2020
  • The purpose of this study is to compare the models of Deep Learning-based Convolution Neural Network(CNN) for concrete crack detection. The comparison models are AlexNet, GoogLeNet, VGG16, VGG19, ResNet-18, ResNet-50, ResNet-101, and SqueezeNet which won ImageNet Large Scale Visual Recognition Challenge(ILSVRC). To train, validate and test these models, we constructed 3000 training data and 12000 validation data with 256×256 pixel resolution consisting of cracked and non-cracked images, and constructed 5 test data with 4160×3120 pixel resolution consisting of concrete images with crack. In order to increase the efficiency of the training, transfer learning was performed by taking the weight from the pre-trained network supported by MATLAB. From the trained network, the validation data is classified into crack image and non-crack image, yielding True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), and 6 performance indicators, False Negative Rate (FNR), False Positive Rate (FPR), Error Rate, Recall, Precision, Accuracy were calculated. The test image was scanned twice with a sliding window of 256×256 pixel resolution to classify the cracks, resulting in a crack map. From the comparison of the performance indicators and the crack map, it was concluded that VGG16 and VGG19 were the most suitable for detecting concrete cracks.

Weather Recognition Based on 3C-CNN

  • Tan, Ling;Xuan, Dawei;Xia, Jingming;Wang, Chao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3567-3582
    • /
    • 2020
  • Human activities are often affected by weather conditions. Automatic weather recognition is meaningful to traffic alerting, driving assistance, and intelligent traffic. With the boost of deep learning and AI, deep convolutional neural networks (CNN) are utilized to identify weather situations. In this paper, a three-channel convolutional neural network (3C-CNN) model is proposed on the basis of ResNet50.The model extracts global weather features from the whole image through the ResNet50 branch, and extracts the sky and ground features from the top and bottom regions by two CNN5 branches. Then the global features and the local features are merged by the Concat function. Finally, the weather image is classified by Softmax classifier and the identification result is output. In addition, a medium-scale dataset containing 6,185 outdoor weather images named WeatherDataset-6 is established. 3C-CNN is used to train and test both on the Two-class Weather Images and WeatherDataset-6. The experimental results show that 3C-CNN achieves best on both datasets, with the average recognition accuracy up to 94.35% and 95.81% respectively, which is superior to other classic convolutional neural networks such as AlexNet, VGG16, and ResNet50. It is prospected that our method can also work well for images taken at night with further improvement.

The development of food image detection and recognition model of Korean food for mobile dietary management

  • Park, Seon-Joo;Palvanov, Akmaljon;Lee, Chang-Ho;Jeong, Nanoom;Cho, Young-Im;Lee, Hae-Jeung
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.521-528
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: The aim of this study was to develop Korean food image detection and recognition model for use in mobile devices for accurate estimation of dietary intake. MATERIALS/METHODS: We collected food images by taking pictures or by searching web images and built an image dataset for use in training a complex recognition model for Korean food. Augmentation techniques were performed in order to increase the dataset size. The dataset for training contained more than 92,000 images categorized into 23 groups of Korean food. All images were down-sampled to a fixed resolution of $150{\times}150$ and then randomly divided into training and testing groups at a ratio of 3:1, resulting in 69,000 training images and 23,000 test images. We used a Deep Convolutional Neural Network (DCNN) for the complex recognition model and compared the results with those of other networks: AlexNet, GoogLeNet, Very Deep Convolutional Neural Network, VGG and ResNet, for large-scale image recognition. RESULTS: Our complex food recognition model, K-foodNet, had higher test accuracy (91.3%) and faster recognition time (0.4 ms) than those of the other networks. CONCLUSION: The results showed that K-foodNet achieved better performance in detecting and recognizing Korean food compared to other state-of-the-art models.

Power-Efficient DCNN Accelerator Mapping Convolutional Operation with 1-D PE Array (1-D PE 어레이로 컨볼루션 연산을 수행하는 저전력 DCNN 가속기)

  • Lee, Jeonghyeok;Han, Sangwook;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.17-26
    • /
    • 2022
  • In this paper, we propose a novel method of performing convolutional operations on a 2-D Processing Element(PE) array. The conventional method [1] of mapping the convolutional operation using the 2-D PE array lacks flexibility and provides low utilization of PEs. However, by mapping a convolutional operation from a 2-D PE array to a 1-D PE array, the proposed method can increase the number and utilization of active PEs. Consequently, the throughput of the proposed Deep Convolutional Neural Network(DCNN) accelerator can be increased significantly. Furthermore, the power consumption for the transmission of weights between PEs can be saved. Based on the simulation results, the performance of the proposed method provides approximately 4.55%, 13.7%, and 2.27% throughput gains for each of the convolutional layers of AlexNet, VGG16, and ResNet50 using the DCNN accelerator with a (weights size) x (output data size) 2-D PE array compared to the conventional method. Additionally the proposed method provides approximately 63.21%, 52.46%, and 39.23% power savings.

Crack Detection Technology Based on Ortho-image Using Convolutional Neural Network (합성곱 신경망을 이용한 정사사진 기반 균열 탐지 기법)

  • Jang, Arum;Jeong, Sanggi;Park, Jinhan;, Kang Chang-hoon;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.19-27
    • /
    • 2022
  • Visual inspection methods have limitations, such as reflecting the subjective opinions of workers. Moreover, additional equipment is required when inspecting the high-rise buildings because the height is limited during the inspection. Various methods have been studied to detect concrete cracks due to the disadvantage of existing visual inspection. In this study, a crack detection technology was proposed, and the technology was objectively and accurately through AI. In this study, an efficient method was proposed that automatically detects concrete cracks by using a Convolutional Neural Network(CNN) with the Orthomosaic image, modeled with the help of UAV. The concrete cracks were predicted by three different CNN models: AlexNet, ResNet50, and ResNeXt. The models were verified by accuracy, recall, and F1 Score. The ResNeXt model had the high performance among the three models. Also, this study confirmed the reliability of the model designed by applying it to the experiment.

Related-key Neural Distinguisher on Block Ciphers SPECK-32/64, HIGHT and GOST

  • Erzhena Tcydenova;Byoungjin Seok;Changhoon Lee
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.72-84
    • /
    • 2023
  • With the rise of the Internet of Things, the security of such lightweight computing environments has become a hot topic. Lightweight block ciphers that can provide efficient performance and security by having a relatively simpler structure and smaller key and block sizes are drawing attention. Due to these characteristics, they can become a target for new attack techniques. One of the new cryptanalytic attacks that have been attracting interest is Neural cryptanalysis, which is a cryptanalytic technique based on neural networks. It showed interesting results with better results than the conventional cryptanalysis method without a great amount of time and cryptographic knowledge. The first work that showed good results was carried out by Aron Gohr in CRYPTO'19, the attack was conducted on the lightweight block cipher SPECK-/32/64 and showed better results than conventional differential cryptanalysis. In this paper, we first apply the Differential Neural Distinguisher proposed by Aron Gohr to the block ciphers HIGHT and GOST to test the applicability of the attack to ciphers with different structures. The performance of the Differential Neural Distinguisher is then analyzed by replacing the neural network attack model with five different models (Multi-Layer Perceptron, AlexNet, ResNext, SE-ResNet, SE-ResNext). We then propose a Related-key Neural Distinguisher and apply it to the SPECK-/32/64, HIGHT, and GOST block ciphers. The proposed Related-key Neural Distinguisher was constructed using the relationship between keys, and this made it possible to distinguish more rounds than the differential distinguisher.

  • PDF