• Title/Summary/Keyword: Aldehyde compound

Search Result 103, Processing Time 0.028 seconds

Anti-inflammatory Action of Phenolic Compounds from Gastrodia elata Root

  • Lee, Ji-Yun;Jang, Young-Woon;Kang, Hyo-Sook;Moon, Hee;Sim, Sang-Soo;Kim, Chang-Jong
    • Archives of Pharmacal Research
    • /
    • 제29권10호
    • /
    • pp.849-858
    • /
    • 2006
  • Previous screening of the pharmacological action of Gastrodia elata (GE) root (Orchidaceae) showed that methanol (MeOH) extracts have significant anti-inflammatory properties. The antiinflammatory agents of GE, however, remain unclear. In this experiment, MeOH extracts of GE were fractionated with organic solvents for the anti-inflammatory activity-guided separation of GE. Eight phenolic compounds from the ether (EtOEt) and ethyl acetate (EtOAc) fractions were isolated by column chromatography: 4-hydroxybenzaldehyde (I), 4-hydroxybenzyl alcohol (II), benzyl alcohol (III), bis-(4-hydroxyphenyl) methane (IV), 4(4'-hydroxybenzyloxy)benzyl-methylether (V), 4-hydroxy-3-methoxybenzyl alcohol (VI), 4-hydroxy-3-methoxybenzaldehyde (VII), and 4-hydroxy-3-methoxybenzoic acid (VIII). To investigate the anti-inflammatory and anti-oxidant activity of these compounds, their effects on carrageenan-induced paw edema, arachidonic acid (AA)-induced ear edema and analgesic activity in acetic acid (HAc)-induced writhing response were carried out in vivo; cyclooxygenase (COX) activity, reactive oxygen species (ROS) generation in rat basophilic leukemia (RBL 2H3) cells and 1,1-diphenyl-2-picryl-hydroazyl (DPPH) scavenging activity were determined in vitro. These phenolic compounds not only had anti-inflammatory and analgesic properties in vivo, but also inhibited COX activity and silica-induced ROS generation in a dose-dependent manner. Among these phenolic compounds, compound VII was the most potent anti-inflammatory and analgesic. Compound VII significantly inhibited silica-induced ROS generation and compound VI significantly increased DPPH radical scavenging activity. Compounds I, II and III significantly inhibited the activity of COX-I and II. These results indicate that phenolic compounds of GE are anti-inflammatory, which may be related to inhibition of COX activity and to anti-oxidant activity. Consideration of the structure-activity relationship of the phenolic derivatives from GE on the anti-inflammatory action revealed that both C-4 hydroxy and C-3 methoxy radicals of benzyl aldehyde play an important role in anti-inflammatory activities.

백색부후균에 의한 크라프트 리그닌의 분해(I) -리기다소나무 리그닌- (Biodegradation of Kraft Lignins by White-Rot Fungi(I) -Lignin from Pitch Pine-)

  • 김명길;안원영
    • 임산에너지
    • /
    • 제17권1호
    • /
    • pp.56-70
    • /
    • 1998
  • This study was carried out to investigate the structural characteristics of kraft lignin and the wood degrading characteristics, the productivity of ligninolytic enzymes and the enzymatic degradation of kraft lignin by white-rot fungi. To purify kraft lignin, precipitation of kraft pulping black liquors of pitch pine meal was done by titration with lN $H_{2}SO_{4}$ reaching to pH 2, and isolation of the precipitates done by centrifugation. The isolated precipitates from pitch pine were redissloved in lN NaOH, reprecipitated by titration with lN $H_{2}SO_{4}$, washed with deionized water, and kept ofr analysis after freeze drying. Fractionation of the precipitates in solution by successive extraction with $CH_{2}Cl_{2}$ and MeOH, and the fractionates were named SwKL, SwKL I, SwKL II, and SwKL III for pitch pine kraft lignin. The more molecular weights of kraft lignin increased, the less phenolic hydroxyl groups and the more aliphatic hydroxyl groups. Because as the molecular weights increased, the ratio of etherified guaiayl/syringyl(G/S ratio) and the percentage were increased. The spectra obtained by 13C NMR and FTIR assigned by comparing the chemical shifts of various signals with shifts of signals from autherized ones reported. The optimal growth temperature and pH of white-rot fungi in medium were $28^{\circ}C$ and 4.5-5.0, respectively. Especially, in temperature and pH range, and mycelial growth, the best white-rot fungus selected was Phanerochaete chrysosporium for biodegradation. For the degradation pathways, the ligninolytic fungus jcultivated with stationary culture using medium of 1% kraft lignin as a substrate for 3 weeks at $28^{\circ}C$. The weight loss of pitch pine kraft lignin was 15.8%. The degraded products extracted successively methoanol, 90% dioxane and diethyl ether. The ether solubles were analyzed by HPLC. Kraft lignin degradation was initiated in $\beta$-O-4 bonds of lignin by the laccase from Phanerochaete chrysosporium and the degraded compounds were produced from the cleavage of $C\alpha$-$C\beta$ linkages at the side chains by oxidation process. After $C\alpha$-$C\beta$ cleavage, $C\alpha$-Carbon was oxidized and changed into aldehyde and acidic compounds such as syringic acid, syringic aldehyde and vanilline. And the other compound as quinonemethide, coumarin, was analyzed. The structural characteristics of kraft lignin were composed of guaiacyl group substituted functional OHs, methoxyl, and carbonyl at C-3, -4, and -5 and these groups were combinated with $\alpha$ aryl ether, $\beta$ aryl ether and biphenyl. Kraft lignin degradation pathways by Phanerochaete chrysosporium were initially accomplished cleavage of $C\alpha$-$C\beta$ linkages and $C\alpha$ oxidation at the propyl side chains and finally cleavage of aromatic ring and oxidation of OHs.

  • PDF

Photoaddition Reactions of Silyl Ketene Acetals with Aromatic Carbonyl Compounds: A New Procedure for β-Hydroxyester Synthesis

  • Yoon, Ung-Chan;Kim, Moon-Jung;Moon, Jae-Joon;Oh, Sun-Wha;Kim, Hyun-Jin;Mariano, Patrick S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권9호
    • /
    • pp.1218-1242
    • /
    • 2002
  • Photochemical reactions of aromatic carbonyl compounds with silyl ketene acetals have been explored. Irradiation of acetonitrile or benzene solutions containing aryl aldehydes or ketones in the presence of silyl ketene acetals is observed to promo te formation of ${\beta}-hydroxyester$, 2,2-dioxyoxetane and 3,3-dioxyoxetane products. The ratios of these photoproducts, which arise by competitive single electron transfer (SET) and classical Paterno-Buchi mechanistic pathways, is found to be dependent on the degree of methyl-substitution on the vinyl moieties of the ketene acetals in a manner which reflects expected alkyl substituent effects on the oxidation potentials of these electron rich donors. An analysis of the product distribution arising by irradiation of a solution containing butyrophenone (6) and the silyl ketene acetal 9, derived from methyl isobutyrate, provides an estimate of the rate constants for the competitive Norrish type Ⅱ, SET and Paterno-Buchi processes occuring. Finally, sequences involving silyl ketene acetal-aryl aldehyde or ketone photoaddition followed by 2,2-dioxyoxetane hydrolysis represent useful procedures for Claisen-condensation type, ${\beta}-hydroxyester$ synthesis.

Dextrin과 β-cyclodextrin이 생체 내에서 헛개나무 추출물의 알코올성 손상으로부터 간보호에 미치는 영향 (Effects of Dextrin and β-cyclodextrin on Protective Effect of Hovenia dulcis Fruit Extract Against Alcohol-induced Liver Damage in vivo)

  • 홍철이;김진범;노혜지;나천수
    • 한국식품위생안전성학회지
    • /
    • 제30권1호
    • /
    • pp.115-119
    • /
    • 2015
  • ${\beta}$-cyclodextrin has an ability to protect compounds from oxidative reaction by collecting them within its ring-like structure. So, In harsh condition ($40^{\circ}C$), marker compound, quercetin, was dramatically reduced in Hovenia dulcis fruit extract containing dextrin at 4 and 8 week compared to 0 week, but not that containing ${\beta}$-cyclodextrin. To evaluate the effects of dextrin and ${\beta}$-cyclodextrin on protective effect of H.dulcis fruit extract against alcohol-induced liver damage, The mice were orally injected alcohol, H. dulcis fruit extract/dextrin (HD) and H. dulcis fruit extract/${\beta}$-cyclodextrin (HCD), respectively, for 7 days. The mice orally administrated with alcohol significantly enhanced the serum concentration of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the activity of lactate dehydrogenase (LDH) in serum compared to the control group. HD and HCD significantly decreased the levels of serum ALT and AST and serum LDH activities compared to alcohol group. And also alcohol group significantly increased the level of total cholesterol compared to the control group, but HD and HCD significantly reduced it compared to the alcohol group. However, the levels of TG in blood were not significantly changed in all groups. The activities of alcohol dehydrogenase (ADH) were significantly increased in HD and HCD group although those of aldehyde dehydrogenase showed an increasing tendency. This data suggested that HD and HCD were able to induce alcohol degradation in the liver tissues. All together, the results showed that HCD demonstrated their ability to protect liver from alcohol-induced damage on equal terms with HD.

바닥재로부터 방출되는 휘발성유기화합물과 폼알데하이드 특성 (Characteristics of VOCs and Formaldehyde Emitted from Floorings)

  • 박현주;장성기;서수연;임준호
    • 한국대기환경학회지
    • /
    • 제25권1호
    • /
    • pp.38-45
    • /
    • 2009
  • Since the seventies and the oil crisis, energy-saving measures have led to a reduction in the ventilation of room. The use of synthetic materials which emit various chemical substances had led to an increase in the concentration of indoor pollutants. "Sick building syndrome (SBS)" and "Sick house syndrome (SHS)" are worldwide problems. Also, the number of complaints about indoor air pollution caused by VOCs (Volatile organic compound) and HCHO (Formaldehyde) has increased. It is important that evaluating and understanding emission of indoor air pollutant from building materials. The object of this study was to evaluate emission test method for flooring such as wood based flooring, carpet tile, rubber tile, PVC sheet and tile, and to determine emission of TVOC and form-aldehyde. The quantity of TVOC and carbonyl compounds emission were sampled and measured by Tenax TA and gas chromatography/mass spectrometry (GC/MSD), 2,4-DNPH cartrige with ozone scrubber and high performance liquid from flooring. The TVOC concentration emitted from carpet tile was ($7.419\;mg/m^2 h$) the highest among 5 groups of test materials. In wood based flooring and PVC tile, the emitted concentration of toluene was high. And the dodecane emission was highest in carpet. The concentration of TVOC decreased by an increase in emission test period. After 7 days, the concentration of TVOC from floorings were about 50% below of the concentration at the first day. TVOC emission from wood based flooring, carpet tile, rubber tile, PVC sheet and tile were decreased in 28 days and remained steady after about 15 days. The concentration of formaldehyde emission from floorings showed extremely low.

조선소 주변지역에서 휘발성유기화합물 및 알데히드류의 농도분포 특성 (Characteristics of Atmospheric Concentrations of Volatile Organic Compounds and Aldehydes for Near a Shipyard)

  • 박정호;서정민;한성종
    • 한국환경과학회지
    • /
    • 제17권7호
    • /
    • pp.767-774
    • /
    • 2008
  • This study was carried out to evaluate the characteristics of atmospheric concentrations of volatile organic compounds(VOCs) and aldehydes for near a large shipyard. Most of the painting work in marine coating is performed indoor and outdoor. Most of the VOCs are emitted to the atmosphere as the paint is applied and cures. The massive scale of a ship makes it difficult to capture the emissions from outdoor painting. The VOCs are an important health and contributors to photochemical smog. The VOCs and aldehydes samples were collected using adsorbent tube and 2,4-DNPH cartridge, and were determined by an automatic thermal desorption coupled with GC/MS and HPLC-UV analysis, respectively. A total of 16 aromatic VOCs and 12 aldehydes of environmental concern were determined. At indoor coating facilities, the most abundant compound among 16 target VOCs appeared to be m,p-xylene, being followed by o-xylene. But most of the aldehydes were extremely lower concentrations. The atmospheric concentration of VOCs, m,p-xylene concentrations were the highest and the mean value were outdoor workshop 11.323 ppb, residental area 5.134 ppb, and green area 2.137 ppb, respectively. However, the most aldehydes were extremely lower concentrations such as formaldehyde, acetaldehyde and non-detection such as iso-valeraldehyde, n-valeraldehyde and o-tolualdehyde.

Antimicrobial Activity and Components of Extracts from Agastache rugosa during Growth Period

  • Song, Jong-Ho;Kim, Min-Ju;Kwon, Hyuk-Dong;Park, In-Ho
    • Preventive Nutrition and Food Science
    • /
    • 제6권1호
    • /
    • pp.10-15
    • /
    • 2001
  • Antimicrobial activities of volatile flavor, water and methanol extracts from Agastache rugosa were investigated. The volatile flavor extract was obtained from A. rugosa by simulataneous distillation-extraction (SDE) method. Antimicrobial activity was investigated by disc diffusion method against several microorganisms, four species of Gram positive, three species of Gram negative and tow species of yeast. The volatile flavor extracts had strong antimicrobial activity againstc. utilisand S. cerevisiae. During the growth period, a difference in antimicrobial activity among volatile flavor extracts from A. rugosa was not shown. The water extract of above 10 mg/disc showed antimicrobial activity. Methanol extracts from A. rugosa harvested in June showed antimicrobial activity against tested Gram positive and Gram negative bacteria, showed weak antimicrobial activity against the bacteria from those harvested in July and August. In particular, antimicrobial activity against V. parahaemolyticus was stronger than that against other bacteria. Water and methanol extracts did not inhibit yeast. C. utilis and S. cerevisiae. To further elucidate the effective components, volatile flavor extracts was analyzed by GC/MS. harvested in June, the components included 8 phenols (93.031%), 18 terpenes (5.230%), 12 alcohols (1.300%) 8 alkanes (0.181%), 1 ester (0.056%), 2 ketones (0.033%), 2 aldehydes (0.011%) and 1 pyrrole (0.007%). In July, the components included 6 phenols (94.366%), 19 terpenes (3.394%), 11 alcohols (2.045%), 1 ester (0.039%), 2 ketones (0.028%), 1 furan (0.005%) and 1 aldehyde (0.005%). And in August, the components included 7 phenols (95.270%), 19 terpenes (2.951%), 13 alcohols (1.399%), 1 ester (0.063%), 2 aldehydes (0.016%), 2 ketones (0.011%), 1 alkane (0.006%), 1 acid (0.005%) and 1 pyrrole (0.005%). The major component of volatile flavors was estragole, a phenolic compound.

  • PDF

Volatile Flavor Compounds in the Leaves of Fifteen Taxa of Korean Native Chrysanthemum Species

  • Kim, Su Jeong;Ha, Tae Joung;Kim, Jongyun;Nam, Jung Hwan;Yoo, Dong Lim;Suh, Jong Taek;Kim, Ki Sun
    • 원예과학기술지
    • /
    • 제32권4호
    • /
    • pp.558-570
    • /
    • 2014
  • This study was conducted to compare the volatile flavor compounds found in the leaves of 15 taxa of Korean native Chrysanthemum species. The volatile flavor compounds from the taxa were collected using a simultaneous steam distillation and extraction technique and were analyzed using gas chromatography/mass selective detector (GC/MSD). A total of 45 volatile flavor compounds were identified with six functional groups: 14 alcohols, 4 ketones, 19 hydrocarbons, 5 esters, 2 acids, and 1 aldehyde. The main functional group in 15 taxa of Chrysanthemum species was alcohols, accounting for 28.7% of volatile flavor compounds, followed by ketones (21.2%) and hydrocarbons (13.2%). Camphor, which is known for its antimicrobial properties, was the most abundant volatile compound (30%) in C. zawadskii ssp. latilobum and var. leiophyllum. In particular, C. indicum subspecies and C. boreale contained ${\alpha}$-thujone, which has outstanding anti-bacterial, anti-cancer, anti-inflammatory, anti-ulcer, and anti-diabetic efficacies. C. indicum var. albescens could be used in perfumes, since it showed 21 times more camphene than C. indicum. In addition, C. indicum var. acuta contained a fairly high content of 1,8-cineole, which has an inhibitory effect on mutagenesis. C. lineare contained only pentadecanoic acid compounds, whereas other taxa hexadecanoic acids. Overall, the Korean native Chrysanthemum species had considerable variation in volatile flavor compounds in their leaves. This study provides a good indication of specific potential use for various applications.

Relationship between sensory attributes and volatile compounds of polish dry-cured loin

  • Gorska, Ewa;Nowicka, Katarzyna;Jaworska, Danuta;Przybylski, Wieslaw;Tambor, Krzysztof
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권5호
    • /
    • pp.720-727
    • /
    • 2017
  • Objective: The aim of this work was to determine the relationship between objective sensory descriptors and volatile flavour compound composition of Polish traditional dry-cured loin. Methods: The volatile compounds were investigated by using solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). For sensory assessment, the quantitative descriptive analysis (QDA) method was used. Results: A total of 50 volatile compounds were found and assigned to 17 chemical families. Most of the detected volatile compounds derived from smoking, lipid oxidative reactions and seasoning (46.8%, 21.7%, and 18.9%, respectively). The dominant compounds were: aromatic hydrocarbon (toluene); alkanes (hexane, heptane, and 2,2,4-trimethylpentane); aldehyde (hexanal); alcohol (2-furanmethanol); ketone (3-hydroxy-2-butanone); phenol (guaiacol); and terpenes (eucalyptol, cymene, ${\gamma}-terpinen$, and limonene). Correlation analysis showed that some compounds derived from smoking were positively correlated with the intensity of cured meat odour and flavour and negatively with the intensity of dried meat odour and flavour, while terpenes were strongly correlated with odour and flavour of added spices. Conclusion: The analysed dry-cured loins were characterized by specific and unique sensory profile. Odour and flavour of studied loins was mainly determined by volatile compounds originating from smoking, seasoning and lipid oxidation. Obtained results suggest that smoking process is a crucial stage during Polish traditional dry-cured loins production.

중화요리용 향미유의 제조 및 향미특성 (Preperation and Flavor Characteristics of Seasoning Oil for Chinese Dish)

  • 구본순
    • 한국식생활문화학회지
    • /
    • 제20권2호
    • /
    • pp.214-220
    • /
    • 2005
  • Methionine과 xylose를 이용한 Maillard 반응생성물을 첨가하고 autoclaving mothod로 중화요리용 향미유를 제조하였다. 이 향미유와 서울 시내 중국 음식점에서 자장면용 양념자장 3종을 구하여 이들의 휘발성 물질을 GC, GC-MSD로 측정하였다. 향미유에서는 61종, 404.92ppm의 휘발성 물질이 분리 정량 되었고, 양념자장 3종에서는 각각 39종, 42종, 42종이 확인 되었으며, 그 양은 각각 333.52ppm, 330.01ppm, 393.18ppm이었다. 중화요리용 향미유의 주요 휘발성 성분은 diallyl disulfde, pentane, diallyl trisulfide, t, t-2, 4-decadienal 및 zinngiberene이었으며, 이들의 함량은 각각 40.15ppm, 32.32ppm, 19.57ppm, 15.06ppm 및 13.23ppm이었다. 시중 자장시중 3종에서는 pentane, propenal, hexanal, t-2-heptanal, 2, 4-heptadienal, t, t-2, 4-decadienal 및 미확인 물질이었다. 본 실험에서 제조한 향미유는 3종류의 sample과 유사한 향미 물질을 포함하고 있었으며 aldehyde, ethane, alcohol 등의 함량은 낮은 편이었다.