• Title/Summary/Keyword: Alcohol sensor

Search Result 86, Processing Time 0.028 seconds

Improvement of Sleep Environment using Sensor (센서를 이용한 수면 환경 개선)

  • Shin, Seong-Yoon;Baek, Jeong-Uk;Rhee, Yang-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.319-320
    • /
    • 2010
  • In this paper, provide the optimal sleep environment of individual by extracting the simulation model based on that collect sleep environment data of bedroom to sleeping, and analyzing the relationship between conditions with obtained data and sleep. In addition, it was to provide a more stable sleep solution by defining different and pattern from sleep situation according to physical condition such as fatigue ratio, alcohol ratio, fasting ratio, etc. depending on the sleep process. Therefore, it change the proper indoor environment and help to enjoy life more pleasant.

  • PDF

Comparative analysis of sensory profiles of commercial cider vinegars from Korea, China, Japan, and US by SPME/GC-MS, E-nose, and E-tongue (한국, 중국, 일본, 미국산 시판 사과식초의 관능적 품질 비교를 위한 SPME-GC/MS, 전자코 및 전자혀 분석)

  • Jo, Yunhee;Gu, Song-Yi;Chung, Namhyeok;Gao, Yaping;Kim, Ho-Jin;Jeong, Min-Hee;Jeong, Yong-Jin;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.430-436
    • /
    • 2016
  • Solid phase microextraction and gas chromatography-mass spectrometry (SPME/GC-MS), electronic nose, and electronic tongue were used to characterize the sensory profiles of cider vinegars from Korea (K1-2), China (C1-2), Japan (J1-2), and US (U1-2). SPME-GC/MS detected acetic acid as the common volatile compound in all vinegars, in addition to isovaleric acid, octanoic acid, and phenethyl acetate. Acids and acetic esters were the major components of Korean and US vinegar samples, respectively. Chinese vinegars had high ethyl acetate content, while Japanese samples were characterized by a low content of acetic acid. Principal component analysis (PCA) pattern provided a clear categorical discrimination of Chinese vinegars by E-nose and E-tongue analyses. The instrumental sensory scores and the taste attributes for flavor ($r^2=0.9431$), sourness ($r^2=0.9515$), and sweetness ($r^2=0.8325$) were highly correlated. Therefore, SPME/GC-MS, E-nose, and E-tongue analyses may be useful tools to discriminate the sensory profiles of cider vinegars of different origins.

Optical properties of Al doped ZnO Nanofibers Prepared by electrospinning (전기방사를 이용한 Al이 첨가된 ZnO 나노섬유의 제조 및 광학 특성평가)

  • Song, Chan-Geun;Yoon, Jong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.205-209
    • /
    • 2011
  • Zinc oxide has semi-conductivity and super conductivity characteristics. It can be used optically and is applied on many areas such as gas sensor, solar cell and optical waveguide. In this paper, to improve optical characteristics of ZnO, aluminum was added on zinc oxide. Zinc oxide and aluminum zinc oxide was fabricated as nano fiber form. ZnO solution was created by mixing poly vinyl pyrrolidone, ethyl alcohol, and zinc acetate. An Al doped ZnO was created by adding aluminum solution to ZnO sol. By applying these sols on electro spinning method, nano fibers were fabricated. These fibers are heat treated at 300, 500, and $700^{\circ}C$ degrees and were analyzed with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to examine the nano structures. TGA and DSC measurement was also used to measure the change of mass and calorie upon temperature change. The absorbance of ZnO and Al-doped ZnO was carried out by UV-vis measurement.

Low Temperature Hermetic Packaging using Localized Beating (부분 가열을 이용한 저온 Hermetic 패키징)

  • 심영대;김영일;신규호;좌성훈;문창렬;김용준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1033-1036
    • /
    • 2002
  • Wafer bonding methods such as fusion and anodic bonding suffer from high temperature treatment, long processing time, and possible damage to the micro-scale sensor or actuators. In the localized bonding process, beating was conducted locally while the whole wafer is maintained at a relatively low temperature. But previous research of localized heating has some problems, such as non-uniform soldering due to non-uniform heating and micro crack formation on the glass capsule by thermal stress effect. To address this non-uniformity problem, a new heater configuration is being proposed. By keeping several points on the heater strip at calculated and constant potential, more uniform heating, hence more reliable wafer bonding could be achieved. The proposed scheme has been successfully demonstrated, and the result shows that it will be very useful in hermetic packaging. Less than 0.2 ㎫ contact Pressure were used for bonding with 150 ㎃ current input for 50${\mu}{\textrm}{m}$ width, 2${\mu}{\textrm}{m}$ height and 8mm $\times$ 8mm, 5mm$\times$5mm, 3mm $\times$ 3mm sized phosphorus-doped poly-silicon micro heater. The temperature can be raised at the bonding region to 80$0^{\circ}C$, and it was enough to achieve a strong and reliable bonding in 3minutes. The IR camera test results show improved uniformity in heat distribution compared with conventional micro heaters. For gross leak check, IPA (Isopropanol Alcohol) was used. Since IPA has better wetability than water, it can easily penetrate small openings, and is more suitable for gross leak check. The pass ratio of bonded dies was 70%, for conventional localized heating, and 85% for newly developed FP scheme. The bonding strength was more than 30㎫ for FP scheme packaging, which shows that FP scheme can be a good candidate for micro scale hermetic packaging.

  • PDF

Hospital Room Environment Monitoring System based on Wireless Communication (무선통신에 기반한 병실 환경 모니터링 시스템)

  • Lee, Seung-Chul;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.28-30
    • /
    • 2022
  • Recently, the number of confirmed cases has increased again with the new variant of COVID-19. Quarantine is recommended, especially to prevent the rapidly increasing spread, as environmental controls, such as minimizing contact with others, can increase safety. In addition, there are often cases in which the patient's condition cannot be confirmed from the standpoint of a guardian, such as visitation being prohibited under certain conditions. At this time, the sensor data values of oxygen, carbon dioxide concentrations, temperature and humidity, and alcohol, which are medical gases used in hospitals, are collected remotely using ZigBee wireless communication technology. Design a system that can be stored and monitored in a database. We propose an environmental monitoring system, which is a visualization system designed to allow hospitals to check and feedback data on the managed environment, and to give reliability to parents.

  • PDF

Preparation and characterization of Ga-doped TiO2 nanofibers by electrospinning (전기방사를 이용한 Ga이 첨가된 나노섬유의 제작 및 특성평가)

  • Song, Chan-Geun;Kang, Won Ho;Yoon, Jong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.274-278
    • /
    • 2012
  • $TiO_2$ can be used optically and is applied on many areas such as gas sensor, solar cell and photocatalysis. Electrospun nanofibers have received great interest for development and utilization in some novel applications, such as chemical sensors, dye-sensitized solar cell and photo catalysis. In this study, pure $TiO_2$ and Ga-doped $TiO_2$ nanofibers synthesized by a modified electrospinning method. The Ga doped $TiO_2$ solution is prepared by mixing poly vinyl pyrrolidone, ethyl alcohol, and titanium (IV) isopropoxide. By electrospinning these sols, nanofibers were fabricated. These fibers are heat-treated at $800^{\circ}C$ in air. The prepared pure $TiO_2$ and Ga-doped $TiO_2$ nanofibers samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy.