• 제목/요약/키워드: Alcohol Fuel

검색결과 120건 처리시간 0.025초

바이오매스에 바인더 첨가에 따른 폐기물 고형연료 특성 및 환경성평가 (Environmental Assessment and Characteristic of Refuse Derived Fuel by Mixed Biomass with Binder)

  • 이형돈;조준형;김인득;김윤수;오광중
    • 청정기술
    • /
    • 제17권4호
    • /
    • pp.336-345
    • /
    • 2011
  • 우리나라는 산림총면적이 전 국토의 64.2%로 목재자원은 지속적으로 생산가능한 중요한 자원이지만 현재 재활용 가능한 폐목재가 분리, 수거되지 않고, 불법매립 및 소각 처리되고 있는 실정이다. 따라서 본 연구에서는 폐목재에 바이오매스자원인 왕겨와 저품위 무연탄을 혼합 압축하여 고형연료를 제조하였으며, 고형연료 제조 시 바인더와 첨가제의 바인딩효과를 분석하였다. 이때, 고형연료의 물리, 화학적 특성을 분석하였으며, 연료기준치와의 비교를 통해 적합성을 판단하였다. 실험결과 무연탄 20%, 왕겨 10%에서 최적의 밀도를 보였으며, P.V.A. (Polyvinyl alcohol), 구아검, 당밀 20 wt.%, 전분 10 wt.% 첨가 시 가장 우수한 것으로 나타났다. 대부분의 샘플이 연료 품질기준 4등급인 저위발열량 3,500 kcal/kg을 만족하는 것으로 나타났으며, 아스팔트 첨가 시 12.9%의 내구성 향상이 나타났고, NaOH 5% 쌀겨 첨가 시 최대 5.8%의 내구성이 향상되는 것으로 나타났다.

수소-알코올연료전지를 위한 금속-산화물 나노구조제어 (Control of Metal-Oxide Nanostructures for $H_{2}-Alcohol$ Fuel Cells)

  • 박경원;송유정;한상범;이종민
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.141-145
    • /
    • 2007
  • Due to their excellent catalytic activity with respect to methanol oxidation on platinum at low temperature, platinum nanosized catalysts have been a topic of great interest for use in direct methanol fuel cells (DMFCs). Since pure platinum is readily poisoned by CO, a by-product of methanol electrooxidation, and is extremely expensive, a number of efforts to design and characterize Pt-based alloy nanosized catalysts or Pt nanophase-support composites have been attempted in order to reduce or relieve the CO poisoning effect. In this review paper, we summarize these efforts based upon our recent research results. The Pt-based nanocatalysts were designed by chemical synthesis and thin-film technology, and were characterized by a variety of analyses. According to bifunctional mechanism, it was concluded that good alloy formation with $2^{nd}$ metal (e.g., Ru) as well as the metallic state and optimum portion of Ru element in the anode catalyst contribute to an enhanced catalytic activity for methanol electrooxidation. In addition, we found that the modified electronic properties of platinum in Pt alloy electrodes as well as the surface and bulk structure of Pt alloys with a proper composition could be attributed to a higher catalytic activity for methanol electooxdation. Proton conducting contribution of nanosized electrocatalysts should also be considered to be excellent in methanol electrooxidation (Spillover effect). Finally, we confirmed the ensemble effect, which combined all above effects, in Pt-based nanocatalsyts especially, such as PtRuRhNi and $PtRuWO_{3}$, contribute to an enhanced catalytic activity.

  • PDF

직접 메탄올 연료전지용 산화극 제조 변수가 성능에 미치는 영향 (Effects of the Variables in the Fabrication of Anode on the Performance of DMFC)

  • 김준희;하흥용;오인환;홍성안;이호인
    • 전기화학회지
    • /
    • 제6권1호
    • /
    • pp.18-22
    • /
    • 2003
  • 직접 메탄을 연료전지(DMFC)의 산화극 제조 변수들에 따른 단위전지의 성능변화 관찰 및 특성분석을 수행하였다. 촉매층에서의 이온 전도도에 영향을 주는 이오노머의 양과, 이오노머와 촉매의 결합구조를 결정하는 촉매 슬러리의 용매를 변수로 하였다 전체 이오노머의 비가 0.6일 때 최고 성능을 보였으며 분극 저항도 가장 작게 나타났다. 전기화학적 활성면적도 이오노머가 늘어날수록 증가하였다. 극성이 작은 용매일수록 이오노머가 잘 용해되지 않아 촉매 응집체의 크기가 커졌다 기존의 물이나 알코올 종류의 용매들에 비해 극성이 낮은 DPK $(\varepsilon=12.60)$를 사용하여 제조한 전극이 가장 높은 성능을 보였으며 낮은 분극 저항 값을 가졌다.

An Endophytic Nodulisporium sp. from Central America Producing Volatile Organic Compounds with Both Biological and Fuel Potential

  • Syed, Riyaz-Ul-Hassan;Strobel, Gary;Geary, Brad;Sears, Joe
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.29-35
    • /
    • 2013
  • A Nodulisporium sp. (Hypoxylon sp.) has been isolated as an endophyte of Thelypteris angustifolia (Broadleaf Leaf Maiden Fern) in a rainforest region of Central America. It has been identified both on the basis of its morphological characteristics and by scanning electron microscopy as well as ITS sequence analysis. The endophyte produces volatile organic compounds (VOCs) that have both fuel (mycodiesel) and use for biological control of plant disease. When grown on potato dextrose agar, the organism uniquely produces a series of ketones, including acetone; 2-pentanone; 3-hexanone, 4-methyl; 3-hexanone, 2,4-dimethyl; 2-hexanone, 4-methyl, and 5-hepten, 2-one and these account for about 25% of the total VOCs. The most abundant identified VOC was 1,8 cineole, which is commonly detected in this group of organisms. Other prominent VOCs produced by this endophyte include 1-butanol, 2-methyl, and phenylethanol alcohol. Moreover, of interest was the presence of cyclohexane, propyl, which is a common ingredient of diesel fuel. Furthermore, the VOCs of this isolate of Nodulisporium sp. were selectively active against a number of plant pathogens, and upon a 24 h exposure caused death to Phytophthora palmivora, Rhizoctonia solani, and Sclerotinia sclerotiorum and 100% inhibition to Phytophthora cinnamomi with only slight to no inhibition of the other pathogens that were tested. From this work, it is becoming increasingly apparent that each isolate of this endophytic Nodulisporium spp., including the Daldina sp. and Hypoxylon spp. teleomorphs, seems to produce its own unique set of VOCs.

졸-겔 법에 의한 $\gamma-LiAlO_2$ 화이버의 제조 및 특성 (Preparation and Characteristics of $\gamma-LiAlO_2$ Fibers by the Sol-Gel Method)

  • 현상훈;홍성안;신현철
    • 한국세라믹학회지
    • /
    • 제32권2호
    • /
    • pp.197-208
    • /
    • 1995
  • ${\gamma}$-LiAlO2 fibers for fiber reinforced molten carbonate fuel cell (MCFC) matrix have been produced from LiAlO2 complex polymeric sols using the sol-gel process. The stable and spinnable LiAlO2 sols could be synthesized by mixing LiNO3 alcohol solutions in aluminum complex polymeric sols prepared through the condensationpolymerization reaction of 1 more of aluminum tri-sec-butoxide with 0.55 mole of mixed chelates (mole ratio of acetylaceton/triethanolamine=0.25/0.3). It was found that the viscosity range for fiber-spinning should be higher than 30 poise. The defect-free flexible ${\gamma}$-LiAlO2 fibers with the average tensile strength of 350 MPa could be obtained when the spinned fibers were heat-treated to 120$0^{\circ}C$ on the specified heating schedule after dried at room temperature.

  • PDF

자동차 대체연료로서의 Indolene-MPHA의 적용에 관한 연구(II) - Indolene-MPHA가 엔진성능에 미치는 영향 - (A Study on the Application of Indolene -MPHA for Automotive Alternative Fuel (II) -)

  • 이민호;오율권;차경옥
    • 에너지공학
    • /
    • 제12권3호
    • /
    • pp.190-196
    • /
    • 2003
  • 본 논문에서는 Indolene-MPHA(Methanol Plus High Alcohols)가 엔진성능에 미치는 영향에 관한 연구가 이루어졌다. 본 연구에서는 연료의 성능 인자를 측정하였다. 특히 연료의 성능 인자들인 MBT 점화 시기, 출력, 열효율 등이 측정되었다. 여기에서 알콜 농도는 청정 Indolene의 체적에 따라서 0∼100%까지 변화시켰다. 연료의 성능 인자들은 서로 다른 압축비에서 단기통 스파크점화 엔진을 사용하여 측정하였다. 성능 측정결과에 따르면 Indolene-MPHA 혼합물이 Indolene-Methanol 혼합물보다 빠른 MBT 점화 시기와 유사한 출력 그리고 낮은 열효율을 나타내고 있음을 알 수 있다.

알코올화합물의 폭발하한계 추산에 관한 연구 (A Study on Estimation of Lower Explosive Limits of Alcohol Compounds)

  • Dong-Myeong Ha;Yong-Chan Choi;Haejin Oh;Su-kyung Lee
    • 한국산업안전학회:학술대회논문집
    • /
    • 한국안전학회 2002년도 추계 학술논문발표회 논문집
    • /
    • pp.291-296
    • /
    • 2002
  • Flammable compounds are indispensible in domestic as well as in industrial fields as fuel, solvent and raw materials. The fire and explosion properties necessary for safe storage, transport, process design and operation of handling flammable substances are lower explosive limits(LEL), upper explosive limits(UEL), flash point, fire point, AIT(auto ignition temperature), MIE(minimum ignition energy), MOC(minimum oxygen concentration) and heats of combustion.

  • PDF

연료용 알콜의 고온생산을 위한 고온성 효모 Saccharomyces cerevisiae F38-1의 분리 (Isolation of Saccharomyces cerevisiae F38-1, a Thermotolerant Yeast for Fuel Alcohol Production at Higher Temperature)

  • 김재완;진익렬;서정훈
    • 한국미생물·생명공학회지
    • /
    • 제23권5호
    • /
    • pp.617-623
    • /
    • 1995
  • A new thermotolerant yeast strain was siolated, and its characteristics have been studied. The strain was identified and named Saccharomyces cerevisiae F38-1. This strain could grow not only at high temperature, but also in high concentrations of sugar and ethanol. S. cerevisiae F38-1 could grow in a medium containing 50% glucose. The isolate produced ethanol at 43$\circ$C, but didn't grow at 40$\circ$C in the presence of 8% ethanol. Fermentation studies showed that the isolate ferments 20% glucose to 9.8% (V/V) ethanol at 40$\circ$C in the presence of 0.2%, yeast extract.

  • PDF

Preparation and Characterization of Composite Membrane for Low Temperature Direct Methanol Fuel Cells

  • Huang Sheng-Jian;Lee Hoi-Kwan;Kang Won-Ho;Wu Qing
    • 마이크로전자및패키징학회지
    • /
    • 제11권4호
    • /
    • pp.69-73
    • /
    • 2004
  • A series of $H_3PO_4$-doped composite membranes based on poly(vinyl alcohol)(PVA) and silica have been prepared by sol-gel process. The proton conductivity, as well as properties of swelling, methanol permeation, was measured in this study. The proton conductivity increased with the molar ratio of $H_3PO_4$ to silica. With the silica content increasing, swelling degree decreased and methanol permeability showed a slight increase. It suggested that the former was mainly determined by hydrophilicity of the membrane, while the latter was dominated by the interconnectivity of matrix. According to the value of on, the optimal conformations of these composite membranes were 60, 70, 80 wt.$\%$ of PS-x in membranes, where x were 1.5, 1.0, and 0.5, respectively. These composite membranes were thermal stability up to $200^{\circ}C$.

  • PDF

Physioelectrochemical Investigation of Electrocatalytic Activity of Modified Carbon Paste Electrode in Alcohol Oxidation as Anode in Fuel Cell

  • Shabani-Shayeh, Javad;Ehsani, Ali;Jafarian, Majid
    • 전기화학회지
    • /
    • 제17권3호
    • /
    • pp.179-186
    • /
    • 2014
  • Methanol electro oxidation on the surface of carbon paste modified by $NiCl_2/6H_2O$ was studied in 1M NaOH by potentiostatic and potentiodynamic methods. Ni/C catalyst by the concentration of 5% Ni showed about twice higher electro catalytic activity than Ni metal. The amount of monolayer's on the surface of electrode is almost one order higher for Ni/C than Ni electrode. The kinetic parameters and the diffusion coefficient of methanol were derived from chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) measurements.