• Title/Summary/Keyword: Alcian blue

Search Result 158, Processing Time 0.03 seconds

The Effects of X-Irradiation on the chondrogensis of mesenchymal cells (연골세포 분화에 미치는 X-선의 영향)

  • Ha, Jong-Ryeol
    • Journal of radiological science and technology
    • /
    • v.25 no.2
    • /
    • pp.77-82
    • /
    • 2002
  • It is well known that X-irradiation affects on maturing process of differentiated chondrocytes. Nevertheless, It has been remained elusively whether X-irradiation affects the process of differentiation of mesenchymal cells which differentiate into chondrocyte, fibroblast, or muscle cells. In this study, we examined the effect of X-irradiation (with 1 to 10 Gy) on chondrogenesis using the mesenchymal cells of chick limb bud. Our results show that X-irradiation dose-dependently inhibited chondrogenesis. This result suggests that immature chondroblast-like mesenchymal cells are sensitive to X-irradiation. Moreover, X-irradiation affects not only maturing process of chondrocytes, but also inhibits the chondrogenesis. Taken together, we demonstrate that the whole process of differentiation of mature chondrocytes from mesenchymal cells is affected by X-irradiation and undifferentiated cells were more affected by X-irradiation than mature cells.

  • PDF

Isopsoralen Induces Differentiation of Prechondrogenic ATDC5 Cells via Activation of MAP Kinases and BMP-2 Signaling Pathways

  • Li, Liang;Eun, Jae-Soon;Nepal, Manoj;Ryu, Jae-Ha;Cho, Hyoung-Kwon;Choi, Bo-Yun;Soh, Yun-Jo
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.299-305
    • /
    • 2012
  • Endochondral bone formation is the process by which mesenchymal cells condense to become chondrocytes, which ultimately form new bone. The process of chondrogenic differentiation and hypertrophy is critical for bone formation and as such is regulated by many factors. In this study, we aimed to indentify novel factors that regulate chondrogenesis. We investigated the possible role of isopsoralen in induction of chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Isopsoralen treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Further, ATDC5 cells treated with isopsoralen were stained more intensely with Alcian blue than control cells, suggesting that isopsoralen increases the synthesis of matrix proteoglycans. Similarly, isopsoralen markedly induced the activation of alkaline phosphatase activity compared with control cells. Isopsoralen enhanced the expressions of chondrogenic marker genes such as collagen II, collagen X, OCN, Smad4 and Sox9 in a time-dependent manner. Furthermore, isopsoralen induced the activation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase, but not that of c-jun N-terminal kinase (JNK). Isopsoralen significantly enhanced the protein expression of BMP-2 in a time-dependent manner. PD98059 and SB 203580, inhibitors of ERK and p38 MAPK, respectively, decreased the number of stained cells treated with isopsoralen. Taken together, these results suggest that isopsoralen mediates a chondromodulating effect by BMP-2 or MAPK signaling pathways, and is therefore a possible therapeutic agent for bone growth disorders.

Study of the cartilage matrix production-promoting effect of chicken leg extract and identification of the active ingredient

  • Yamada, Hiroaki;Nakamura, Utano;Nakamura, Toshio;Uchida, Yoshikazu;Yamatsu, Atsushi;Kim, Mujo
    • Nutrition Research and Practice
    • /
    • v.13 no.6
    • /
    • pp.480-487
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Osteoarthritis (OA) is a major public health issue in Japan and other countries, and foods that prevent or treat OA are in strong demand. Proteins and peptides in chicken meat and bones are known for being rich in functional and nutritional ingredients for the improvement of osteoporosis. We speculated that chicken legs, a food consumed in many regions of the world, may also contain such ingredients. In this study, we aim to (i) evaluate the effect of chicken leg extract (CLE) on the promotion of cartilage matrix production and (ii) identify the active ingredient in CLE that contributes to this function. MATERIALS/METHODS: Artificial CLE digest was prepared, and the acid mucopolysaccharide production-promoting activity of the CLE digest was evaluated by alcian blue staining of ATDC5 cells. CLE was orally administered to rabbits with burr holes in the knee joint of the femur, and the degree of regeneration of cartilage matrix was evaluated. Furthermore, we investigated orally administered CLE-derived peptides in human plasma using LC-MS. From measuring the acid mucopolysaccharide production-promotion activity of these peptides, a molecule considered to be an active ingredient in the CLE digest was identified. RESULTS: CLE digest promoted acid mucopolysaccharide production and facilitated regeneration of cartilage matrix in in vitro and in vivo experiments. Four peptides including phenylalanyl-hydroxyproline (Phe-Hyp) were detected as CLE-derived peptides in human plasma. The effect of CLE was inferred to be due to Phe-Hyp, which was confirmed to be present in the CLE digest. CONCLUSIONS: It was shown that CLE stimulated the production of articular cartilage matrix both in vitro and in vivo, and that CLE could be an effective food for preventing or treating OA. Furthermore, only Phe-Hyp was confirmed as the active compound in the CLE digest, suggesting that the activity of CLE was due to Phe-Hyp.

Histologic Analysis of Vocal Folds in Aging Rats (노화 쥐 성대의 조직학적 분석)

  • Shin, Sung-Chan;Kim, Ji Min;Kwon, Hyun-Keun;Cheon, Yong-Il;Lee, Byung-Joo
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.31 no.2
    • /
    • pp.66-70
    • /
    • 2020
  • Background and Objectives Presbyphonia is characterized by hoarse, breathy, weak vocal intensity. Extracellular matrix (ECM) in lamina propria (LP) of the vocal folds play an important role in voice production, and change of ECM according to the aging leads to the presbyphonia. The aim of this study was to investigate the histologic analysis of aging vocal fold of rat. Materials and Method Six and twenty two months old Sprague-Dawley rats (n=8, each group) were used and classified into young (six months old rats) and old (twenty two months old rats) group. Histologic analysis and immunohistochemical staining for ECM of LP were performed. Results Overall cellular density was significantly decreased in old rat group. Elastin fibers of LP were significantly decreased in old rat group. Type I collagen was significantly increased in old rat group. Type III collagen did not show significant difference. Hyaluronic acids did not show significant difference in Alcian blue staining and immunohistochemical staining. Conclusion Decreased general cellular density and elastin fiber and increased type I collagen were observed in the LP of vocal folds of aging rats. These ECM changes might to contribute the aging voice.

Short-Term Changes in Gut Microflora and Intestinal Epithelium in X-Ray Exposed Mice

  • Tsujiguchi, Takakiyo;Yamaguchi, Masaru;Yamanouchi, Kanako
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.4
    • /
    • pp.163-170
    • /
    • 2020
  • Background: Gut microflora contributes to the nutritional metabolism of the host and to strengthen its immune system. However, if the intestinal barrier function of the living body is destroyed by radiation exposure, the intestinal bacteria harm the health of the host and cause sepsis. Therefore, this study aims to trace short-term radiation-induced changes in the mouse gut microflora-dominant bacterial genus, and analyze the degree of intestinal epithelial damage. Materials and Methods: Mice were irradiated with 0, 2, 4, 8 Gy X-rays, and the gut microflora and intestinal epithelial changes were analyzed 72 hours later. Five representative genera of Actinobacteria, Firmicutes, and Bacteroidetes were analyzed in fecal samples, and the intestine was pathologically analyzed by Hematoxylin-Eosin and Alcian blue staining. In addition, DNA fragmentation was evaluated by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. Results and Discussion: The small intestine showed shortened villi and reduced number of goblet cells upon 8 Gy irradiation. The large intestine epithelium showed no significant morphological changes, but the number of goblet cells were reduced in a radiation dose-dependent manner. Moreover, the small intestinal epithelium of 8 Gy-irradiated mice showed significant DNA damaged, whereas the large intestine epithelium was damaged in a dose-dependent manner. Overall, the large intestine epithelium showed less recovery potential upon radiation exposure than the small intestinal epithelium. Analysis of the intestinal flora revealed fluctuations in lactic acid bacteria excretion after irradiation regardless of the morphological changes of intestinal epithelium. Altogether, it became clear that radiation exposure could cause an immediate change of their excretion. Conclusion: This study revealed changes in the intestinal epithelium and intestinal microbiota that may pave the way for the identification of novel biomarkers of radiation-induced gastrointestinal disorders and develop new therapeutic strategies to treat patients with acute radiation syndrome.

Comparative Morphological Study on Parotid and Submandibular Salivary Glands in Ovariectomized Rats

  • Jeong, Moon-Jin;Lee, Myoung-Hwa;Lim, Do-Seon;Jeong, Myeongju;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.22 no.2
    • /
    • pp.83-89
    • /
    • 2022
  • Background: Estrogen deficiency affects the structure and function of the salivary glands in women, leading to a decrease in salivary secretion and a change in the composition of saliva. Previous studies on changes in the salivary glands that cause estrogen deficiency have reported only partial results for the parotid and submandibular glands, and there are few comparative morphological studies of histological changes between the parotid and submandibular glands in ovariectomized rats (OVX) leading to estrogen deficiency. This study aimed to analyze the histopathological and histochemical changes in the parotid and submandibular salivary glands causing estrogen deficiency by using OVX, and to discuss the mechanism on these changes. Methods: The parotid and submandibular glands from sacrificed control and OVX groups were fixed with cold 4% paraformaldehyde in phosphate buffer (pH 7.2). The tissues were dehydrated using a series of graded ethyl alcohol and embedded in paraffin. For histopathological analysis, sections cut to a thickness of 6 to 7 ㎛ were stained with hematoxylin and eosin (H&E). For histochemical analysis, Periodic acid-Schiff (PAS), Alcian blue (AB, pH 2.5), and PAS+AB (pH 2.5 and pH 1) staining was performed. Results: Histopathological analysis of OVX tissue showed that the parotid and submandibular salivary glands were broadly and clearly separated and divided into lobes. In OVX, acinar and ductal cells with condensed polymorphic or pyknotic nucleus, which are presumed to be characteristic of apoptotic cells, and degenerated cells with lipid deposition in cytoplasmic granules and ruptured membranes were increased. Histochemical analysis of OVX, confirmed an increase in the number and acidification of acinar secretory granules. Conclusion: Histopathological and histochemical changes and the effects of estrogen deficiency are more evident in the submandibular salivary gland than in the parotid gland.

Comparison of Augmentation Method for Achilles Tendon Repair: Using Thoracolumbar Fascia and the Polypropylene Mesh

  • Jieun Seo;Won-Jae Lee;Min Jang;Min-Soo Seo;Seong Mok Jeong;Sae-Kwang Ku;Youngsam Kwon;Sungho Yun
    • Journal of Veterinary Clinics
    • /
    • v.40 no.1
    • /
    • pp.16-24
    • /
    • 2023
  • This study aimed to compare complete ruptured tendon healing between two different repair methods using the Achilles tendon of New Zealand white rabbits. Thoracolumbar fascia (TF) padded Kessler suture, polypropylene mesh (PM) padded Kessler suture, and Kessler suture only were performed on the completely transected lateral gastrocnemius tendon, and biomechanical and histologic characteristics were assessed after 8 weeks. For biomechanical assessment, the tensile strength of each repaired tendon was measured according to the established methods. For histomorphometric analysis, hematoxylin and eosin staining for general histology, and Masson's trichrome (MT) staining for collagen fibers, Alcian blue (AB) staining for proteoglycans were performed and analyzed. Significant increases in tensile strength with remarkable decreases in the abnormalities against nuclear roundness, cell density, fiber structure, and fiber alignment and significant decreases in the mean number of infiltrated inflammatory cells and AB-positive proteoglycan-occupied regions with increases in MT-positive collagen fiber-occupied regions were demonstrated in the Kessler suture with PM or TF padding groups as compared to those of the Kessler suture group. Both of PM and TF provided potent tensile strength and supported healing with the evidence of histological examinations. This means that augmentation with PM is useful for repairing a completely ruptured Achilles tendon, without additional surgery for autograft material harvesting.

Effects of Bosaengtang Administration in Pregnant Rats and Fetuses (보생탕이 랫드의 모체와 태자에 미치는 영향에 대한 연구)

  • Kim, Chang-Seok;Lee, Sun-Dong;Kim, Pan-Gyi;Lee, Jang-Woo;Park, Hae-Mo
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.9 no.2
    • /
    • pp.59-75
    • /
    • 2005
  • The experiments were undertaken to evaluate the effects of Bosaengtang in pregnant rats and fetuses. Female Sprague-Dawley rats were orally administered with Bosaengtang at the dose of 5mg/kg/day for 20 days. Pregnant rats were sacrificed at the 20th day of gestation, and observed internal and reproductive organs. Fetuses were randomly selected and fixed in 95% ethanol. Fetuses were stained with alcian blue and alizarin red S, and observed skeletal malformations. The results obtained were as follows : Bosaengtang administered group showed higher maternal body weight than the control group, but both groups showed increase in weight. Bosaengtang administered group showed lower than the control group, and higher liver and kidney weight than the control group, but the differences were minimal. There were no significant changes between the control and treated group in blood chemistry values and hematological values but all the groups were within in normal ranges. There were no significant changes in the number of corpus luteum, implantation, live fetus and implantation rate, delivery rate, late resorption rate, sex ratio, but Bosaengtang administered group showed higher early resorption rate than control group. comparing the control and Bosaengtang group, neonatal body weight and the number of fetuses were increased in Bosaengtang group. The fetuses of dams treated with Oriental medicine didn't showed external malformation. Vertebral and sternal variations were observed in Bosaengtang group, but the differences were not apparent compared to the control group. The number of ribs, cervical, thoracic and lumbar vertebrae were normal. The number of sacral was similar and the number of caudal was increased. Fetuses showed significant difference in the number of caudal vertebrae. (P<0.01) From these results, we can carefully conclude that Bosaengtang showed beneficial effects on maternal body weight, early resorption rate, number of live fetus. There were no significant changes in organ weight, hematoscopy, reproduction organs. External malformation wasn't visible. Skeletal variations were showed in vertebrae and sternum but compared to the control group, these variations weren't much different.

  • PDF

The Immunohistochemical Expression of Collagens and the Morphogenesis in the Developing Mandible of Human Embryos and Fetuses (배자와 태아에서 하악골의 형태발생 및 교원질 발현에 관한 면역조직화학적 연구)

  • Kook, Yoon-Ah;Kim, Sang-Cheol;Kim, Eun-Cheol;Kim, Oh-Hwan;Kim, Jong-Ghee
    • The korean journal of orthodontics
    • /
    • v.26 no.2 s.55
    • /
    • pp.187-196
    • /
    • 1996
  • Underlying malocclusions and dentofacial deformities are often related to variations in the craniofacial development. Type I and type II collagens are considered the major collagens of bone and cartilage respectively. Monitoring the patterns of those protein expressions during development will Provide a basis for the understanding of normal and abnormal growths. This study was undertaken to investigate the morphogenetic changes and the expression patterns of type I and II collagen proteins involved in the developing mandible of human embryos and fetuses. 50 embryos and fetuses were studied with Hematoxylin and Eosin, Alcian, blue-PAS, Masson Trichrome, md Immunohistochemical stains. The results were as follows : 1. A 13.5 mm embryo showed the stomatodeum with dental lamina, maxillary and mandibular processes. Meckel's cartilage appeared in the mandibular arch of a 20.5 mm embryo. New bone formation was bilaterally initiated at the outer side of middle portion of Meckel's cartilage of 22-38 mm embryos. 2. Meckel'cartilage was resorbed at the 15th week fetus. The endochondral ossification was observed where there was direct replacement of cartilage by bone. Meckel'cartilage disappeared and membraneous ossification were observed at the 25th week. 3. Before the appearance of Meckel's cartilage, the expression of type I collagen was moderate at the odontogenic epithelium of maxillary & mandibular process, but mild for the expression of type II collagen. 4. During the appearance of Meckel's cartilage and new bone formation, the immunoactivity of type II collagen was more expressed than type I collagen at the Meckel's cartilage and new bone. 5. During intrarmembranous bone formation, the expression of type II collagen was rare in the bony trabeculae. There was a switch for the expression of collagens from type II to type I during the appearance of Meckel's cartilage.

  • PDF

THE EFFECT OF FIBROBLAST GROWTH FACTOR SIGNALING ON CARTILAGE FORMATION (FGF signaling이 연골 형성에 미치는 영향)

  • Park, Choong-Je;Lee, Sang-Won;Nam, Soon-Hyun;Kim, Young-Jin;Ryoo, Hyhn-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.4
    • /
    • pp.643-653
    • /
    • 2003
  • Fibroblast growth factor (FGF) / FGF receptor (FGFR) mediated signaling is required for skeletogenesis in cluding intramembranous and endochondral ossifications Runx2 ($Cbfa1/Pebp2{\alpha}A/AML3$) is an essential transcription factor for osteoblast differentiation and bone formation. Murine calvaria and mandible are concurrently undergoing both intramembranous bone and cartilage formations in the early developmental stage. However the mechanism by which these cartilage formations are regulated remains unclear. To elucidate the effect of FGF signaling on development of cranial sutural cartilage and Meckel's cartilage and to understand the role of Runx2 in these process, we have done both in vivo and in vitro experiments. Alcian blue staining showed that cartilage formation in sagittal suture begins from embryonic stage 16 (E16), Meckel's cartilage formation in mandible from E12. We analyzed by in situ hybridization the characteristics of cartilage cells that type II collagen, not type X collagen, was expressed in sagittal sutural cartilage and Meckel's cartilage. In addition, Runx2 was not expressed in Meckel's cartilage as well as sagittal sutural cartilage, except specific expression pattern only surrounding both cartilages. FGF signaling pathway was further examined in vitro. Beads soaked in FGF2 placed on the sagittal suture and mandible inhibited both sutural and Meckel's cartilage formations. We next examined whether Runx2 gene lies in FGF siganling pathway during regulation of cartilage formation. Beads soaked in FGF2 on sagittal suture induced Runx2 gene expression. These results suggest that FGF signaling inhibits formations of sagittal sutural and Meckel's cartilages, also propose that FGF siganling is involved in the proliferation and differentiation of chondroblasts through regulating the transcription factor Runx2.

  • PDF