• Title/Summary/Keyword: Alcalase 2.4L

Search Result 38, Processing Time 0.021 seconds

Effect of Sodium Caseinate Hydrolysates on Angiotensin-I Converting Enzyme Inhibition Activity (Sodium Caseinate 가수분해물의 Angiotensin-I Converting Enzyme 저해효과에 관한 연구)

  • Lee, Keon-Bong;Shin, Yong-Kook;Baick, Seung-Chun
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.652-658
    • /
    • 2012
  • This study was carried out to identify the ACE (Angiotensin converting enzyme) inhibitory activity of casein hydrolysates for development of anti-hypertensive hydrolysates. Sodium caseinate was treated with six kinds of commercial proteases such as Flavourzyme, Protamex, Neutrase 1.5, Alcalase, Protease M, and Protease S for 8 h individually, and was then treated with the enzyme combination for 4 h at $45^{\circ}C$. The hydrolysate which had the highest ACE inhibitory effect was then hydrolysed successively with three digestive enzymes: pepsin, trypsin, and ${\alpha}$-chymotrypsin, at $37^{\circ}C$ for 4 h under conditions mimicking those of the gastrointestinal tract. UF (ultra filtration) treatment was applied to one of the secondary hydrolysates to determine ACE inhibitory activity. When sodium caseinate was hydrolysed by commercial proteases, the degree of hydrolysis (DH) showed 2.54 to 4.25% and after secondary hydrolysis, DH showed 4.30 to 5.22%. ACE inhibitory activity and $IC_{50}$ values decreased, and inhibition rates increased during hydrolysis. Protamex treatment showed the lowest $IC_{50}$ value ($516{\mu}g/mL$) and Flavourzyme hydrolysate showed the highest $IC_{50}$value ($866{\mu}g/mL$). As the first hydrolysate was treated with Flavourzyme, the ACE inhibitory activity increased. Neutrase hydrolysate had the highest activity with an $IC_{50}$ value ($282{\mu}g/mL$). When Neutrase plus Flavourzyme treatment was hydrolyzed by digestive enzymes, the $IC_{50}$ value ($597{\mu}g/mL$) was decreased statistically (p<0.05). As Neutrase plus Flavourzyme hydrolysate is treated by UF with MW cut-off 10,000, permeate showed $273{\mu}g/mL$ of $IC_{50}$ value, showed no difference, but retentate which has over MW 10,000 showed statistically different $IC_{50}$ value, $635{\mu}g/mL$ (p<0.05).

Properties of Porphyran and Hemicellulose extracted with Different extract Solutions and Enzymatic Pretreatments from Porphyra (추출 용매 및 효소 전처리 방법에 따른 포피란과 헤미셀루로오즈의 특성)

  • AN, Se-Ra;KOO, Jae-Geun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.1
    • /
    • pp.108-117
    • /
    • 2017
  • Laver, Porphyra, is distinctive for its high content of proteins and polysaccharides such as porphyran and hemicellulose. The chemical properties of the polysaccharides extracted with different extraction methods such as hot water, dilute acid(pH 4.0) or alkali solution(2N NaOH) were examined to investigate the suitable extraction conditions for porphyran and hemicellulose from laver. For porphyran extraction, dilute acid solution was more preferable to hot water and alkali solution because of its higher 3,6-anhydrogalactose content and lower protein content. However, alkali solution was more suitable to extract the hemicellulose because of higher mannose content indicating the extraction of mannan. To decrease contamination of the polysaccharides with protein, the dried lavers were pretreated with enzymes (Protamex, Flavourzyme, Alcalase, Viscozyme) before hot water extraction. All enzyme pretreatments increased the yield of polysaccharides by compared with control (enzyme unpretreated) and Flavourzyme pretreatment was most effective to decrease protein contamination in the polysaccharide. All viscosities of porphyran solutions pretreated by enzymes were lower compared to the control porphyran solution and showed pseudoplastic behavior with yield stress. In case of alkali extraction of residues obtained after enzyme hydrolysis and hot water extraction, protease pretreatment increased the mannose contents in the polysaccharide while the xylose content was increased by Viscozyme pretreatment.

Preparation and Food Characteristics of Seasoned Anchovy Sauce with Improved Bitterness by Treatment of Aminopeptidase Active Fraction Derived from Common Squid Todarodes pacificus Hepatopancreas (살 오징어(Todarodes pacificus) 간췌장 유래 Aminopeptidase 활성획분에 의해 쓴맛이 개선된 멸치 조미소스의 제조 및 식품특성)

  • Yoon, In Seong;Kim, Jin-Soo;Choe, Yu Ri;Sohn, Suk Kyung;Lee, Ji Un;Kang, Sang In;Kwon, In Sang;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.6
    • /
    • pp.849-860
    • /
    • 2021
  • This study investigated the preparation of seasoned anchovy sauce (SAS) and its functional characteristics by using aminopeptidase active fractions (AAFs) derived from squid Todarodes pacificus hepatopancreas as a bitter taste improver. As the base of the SAS, a hydrolysate (AAAH) prepared by continuously treating raw anchovies with Alcalase-AAF was used. The high-performance liquid chromatography profile of the AAAH suggested that the action of AAFs decreased the hydrophobicity of the N-terminal peptide related to bitterness in the protein hydrolysates. SAS was prepared by blending with the AAAH and other ingredients. The crude protein (2.5%), carbohydrates (18.4%), amino acid-nitrogen (1,325.1 mg/100 mL), and total free and released amino acids (FRAAs, 700.2 mg/100 mL) of SAS were higher than those of commercial anchovy sauce (CAS). Sensory evaluation revealed that SAS was superior to CAS in flavor, color, and taste. The main FRAAs of SAS were glycine (16.8%), alanine (13.2%), glutamic acid (7.8%), and leucine (7.3%). The amino acids that had a major influence on the taste according to the SAS taste values were glutamic acid, aspartic acid, alanine, and histidine. The angiotensin-converting enzyme inhibitory (2.21 mg/mL) and antioxidant activities (3.58 mg/mL) of SAS were superior to those of CAS.

Preparation and Antioxidant Activities In Vitro of a Designed Antioxidant Peptide from Pinctada fucata by Recombinant Escherichia coli

  • Wu, Yanyan;Ma, Yongkai;Li, Laihao;Yang, Xianqing
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • An antioxidant peptide derived from Pinctada fucata meat using an Alcalase2.4L enzymatic hydrolysis method (named AOP) and identified by LC-TOF-MS has promising clinical potential for generating cosmetic products that protect skin from sunshine. To date, there have been few published studies investigating the structure-activity relationship in these peptides. To prepare antioxidant peptides better and improve their stability, the design and expression of an antioxidant peptide from Pinctada fucata (named DSAOP) was studied. The peptide contains a common precursor of an expression vector containing an ${\alpha}$-helix tandemly linked according to the BamHI restriction sites. The DNA fragments encoding DSAOP were synthesized and subcloned into the expression vector pET-30a (+), and the peptide was expressed mostly as soluble protein in recombinant Escherichia coli. Meanwhile, the DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity of DSAOP $IC_{50}$ values were $0.136{\pm}0.006$, $0.625{\pm}0.025$, and $0.306{\pm}0.015mg/ml$, respectively, with 2-fold higher DPPH radical scavenging activity compared with chemosynthesized AOP (p < 0.05), as well as higher superoxide radical scavenging activity compared with natural AOP (p < 0.05). This preparation method was at the international advanced level. Furthermore, pilot-scale production results showed that DSAOP was expressed successfully in fermenter cultures, which indicated that the design strategy and expression methods would be useful for obtaining substantial amounts of stable peptides at low costs. These results showed that DSAOP produced with recombinant Escherichia coli could be useful in cosmetic skin care products, health foods, and pharmaceuticals.

Changes in physicochemical characteristics of porcine blood under various conditions of enzyme hydrolysis (효소분해조건에 따른 돈혈의 식품학적 품질 특성 변화)

  • Park, Joo Young;Kim, Mi-Yeon;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.413-421
    • /
    • 2016
  • The aim of this study was to investigate physicochemical properties of porcine blood hydrolyzed by proteases under various conditions for utilization as a food source. Five kinds of proteases (Alcalase, Neutrase, Protex-40L, PTPF-1430, and KMFP-15) were tested at different concentrations (0.1, 0.2, and 0.3%, w/v) during hydrolysis at 55 for 4 hr. Hydrolysis with $^{\circ}C$ KMFP-15 showed the lowest pH by 7.3. The highest soluble solid ($24.3^{\circ}Brix$) and free amino acid (4,944 mg%) contents were obtained by hydrolysis with KMFP-15 (w/v) at 0.2% addition level, which was not significantly different from the sample hydrolyzed at 0.3% level. Under the optimal condition of KMFP-15 at 0.2%, porcine blood was hydrolyzed at 60 up to 8 hr. The $^{\circ}C$ free amino acid content reached the highest at 4 hr, and then decreased with longer hydrolysis time. Under the optimal hydrolysis conditions, porcine blood hydrolysis powder had plenty of crude proteins, amino acids, and minerals, including iron, potassium, and zinc. The results showed that porcine blood could be utilized as an useful source of food supplement. The optimum conditions of hydrolyzing porcine blood, using 0.2 KMFP at $60^{\circ}C$ for 4 hr, can be used in the commercial production of protein supplements, amino acid sources, and iron fortifying agents.

Peptide Analysis and the Bioactivity of Whey Protein Hydrolysates from Cheese Whey with Several Enzymes

  • Jeewanthi, Renda Kankanamge Chaturika;Kim, Myeong Hee;Lee, Na-Kyoung;Yoon, Yoh Chang;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.37 no.1
    • /
    • pp.62-70
    • /
    • 2017
  • The aim of this study was identifying a suitable food grade enzymes to hydrolyze whey protein concentrates (WPCs), to give the highest bioactivity. WPCs from ultrafiltration retentate were adjusted to 35% protein (WPC-35) and hydrolyzed by enzymes, alcalase, ${\alpha}-chymotrypsin$, pepsin, protease M, protease S, and trypsin at different hydrolysis times (0, 0.5, 1, 2, 3, 4, and 5 h). These 36 types of hydrolysates were analyzed for their prominent peptides ${\beta}-lactoglobulin$ (${\beta}-Lg$) and ${\alpha}-lactalbumin$ (${\alpha}-La$), to identify the proteolytic activity of each enzyme. Protease S showed the highest proteolytic activity and angiotensin converting enzyme inhibitory activity of IC50, 0.099 mg/mL (91.55%) while trypsin showed the weakest effect. Antihypertensive and antioxidative peptides associated with ${\beta}-Lg$ hydrolysates were identified in WPC-35 hydrolysates (WPH-35) that hydrolyzed by the enzymes, trypsin and protease S. WPH-35 treated with protease S in 0.5 h, responded positively to usage as a bioactive component in different applications of pharmaceutical or related industries.

Improvement on Yield of Extracts from Byproducts of Alaska Pollock Theragra chalcogramma and Sea Tangle Laminaria japonica using Commercial Enzymes and Its Food Component Characterization (상업적 효소를 이용한 명태(Theragra chalcogramma) 두부 및 정형 다시마(Laminaria japonica) 부산물 유래 고압 추출물의 수율개선 및 이의 식품성분 특성)

  • Noh, Yuni;Park, Kwon Hyun;Lee, Ji Sun;Kim, Hyeon Jeong;Kim, Min Ji;Kim, Ki Hyun;Kim, Jeong Gyun;Heu, Min Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.1
    • /
    • pp.37-45
    • /
    • 2013
  • This study was conducted to improve the yield of extracts from Alaska pollock Theragra chalcogramma head and sea tangle Laminaria japonica byproducts using various commercial enzymes, such as Alcalase, Flavourzyme, Neutrase (NH), and Protamex. Among the enzymatic hydrolysates, the yield was highest in hydrolysate incubated with NH for 4 h. NH-treated hydrolysates (NHH) also improved functional properties, such as angiotensin-I converting enzyme (ACE) inhibitory activity and 2,2-diphenyl-1-picryldrazyl (DPPH) radical scavenging activity, as compared to extracts from Alaska pollock head and sea tangle byproducts. Total free amino acid and taste values of NHH were 379.7 mg/100 mL and 24.03, respectively, after digestion for 4 h. These values are 2.2-fold and 1.9-fold higher compared with those of water soluble fractions extracted from Alaska pollock head and non-forming sea tangle, respectively. According to the taste value results, the major taste-active compounds among free amino acids of NHH were glutamic acid and aspartic acid. These results suggest that NHH can be used as an ingredient for natural seasoning preparation.

Screening of Extracts from Marine Green and Brown Algae in Jeju for Potential Marine Angiotensin-I Converting Enzyme (ACE) Inhibitory Activity (제주 자생 해양 녹조류와 갈조류 추출물로부터의 항고혈압 활성)

  • Cha, Seon-Heui;Ahn, Gin-Nae;Heo, Soo-Jin;Kim, Kil-Nam;Lee, Ki-Wan;Song, Choon-Bok;K.Cho, So-Mi;Jeon, You-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.3
    • /
    • pp.307-314
    • /
    • 2006
  • This study was conducted to screen in vitro angiotensin converting enzyme (ACE) inhibitory activities of methanol (MeOH) and aqueous extracts which were prepared by four different extractions-80% methanol extracts(ME) at $20^{\circ}C\;and\;70^{\circ}C$, respectively and aqueous extracts (AE) at both temperatures with the residue of the MEs-of ten marine green algae and nineteen brown algae collected along Jeju coast of Korea. Most marine brown algae extracts showed higher capacities than those of marine green algae in ACE inhibitory activity. Particularly, $70^{\circ}C$ MeOH extract (70ME) of Hizikia fusiforme showed the strongest inhibition activity (about 87%) among all the extracts. Also, 70 MEs of Enteromorpha linza, Ishige sinicola, Laminaria ochotensis, Petrospongium rugosum, Sagrassum horneri, Undaria pinnatifida and $20^{\circ}C$ MeOH extracts (20ME) of Myagropsis myagroides, Petrospongium rugosum, $20^{\circ}C$ aqueous extracts (20AE) of Codium contractum, Enteromorpha compressa, and $70^{\circ}C$ aqueous extracts (70AE) of Ecklonia cava, Petrospongium rugosum showed moderate ACE inhibitory activities more than 50% and the other extracts exhibited weak activities. On tile other hand, E. cava had the best ACE inhibitory activity among 70AEs. This indicates that 70AE of E. cava contains potential anti-ACE macromolecular. We tried to proteolytic digest 70AE of E. cava to induce production of anti-ACE peptides from E. cava 70AE. The enzymes used are five pretenses including Kojizyme, Flavourzyme, Neutrase, Alcalase, and Protamex, which are food grade-commercial enzymes from Novo Co. Flavourzyme-digest of E. cava 70AE showed the highest inhibitory activity about 90%. And the five different enzymatic digests of the E. cava 70AE ranged from 2.33 to 3.56 ${\mu}g/mL$, respectively in $IC_{50}$ values of anti-ACE activity.