• 제목/요약/키워드: Alberta

검색결과 226건 처리시간 0.024초

Condition based age replacement policy of used item

  • Lim, J.H.;Lipi, T.F.;Zuo, M.J.
    • International Journal of Reliability and Applications
    • /
    • 제12권2호
    • /
    • pp.131-143
    • /
    • 2011
  • In most of literatures of age replacement policy, the authors consider the case that a new item starts operating at time zero and is to be replaced by new one at time T. It is, however, often to purchase used items because of the limited budget. In this paper, we consider age replacement policy of a used item whose age is $t_0$. The mathematical formulas of the expected cost rate per unit time are derived for both infinite-horizon case and finite-horizon case. For each case, we show that the optimal replacement age exists and is finite and investigate the effect of the age of the used item.

  • PDF

Membrane associated Ca2+ buffers in the heart

  • Lee, Duk-Gyu;Michalak, Marek
    • BMB Reports
    • /
    • 제43권3호
    • /
    • pp.151-157
    • /
    • 2010
  • $Ca^{2+}$ is a universal signalling molecule that affects a variety of cellular processes including cardiac development. The majority of intracellular $Ca^{2+}$ is stored in the endoplasmic and sarcoplasmic reticulum of muscle and non-muscle cells. Calreticulin is a well studied $Ca^{2+}$-buffering protein in the endoplasmic reticulum, and calreticulin deficiency is embryonic lethal due to impaired cardiac development. Despite calsequestrin being the most abundant $Ca^{2+}$-buffering protein in the sarcoplasmic reticulum, viability is maintained in embryos without calsequestrin and normal $Ca^{2+}$ release and contractile function is observed. The $Ca^{2+}$ homeostasis regulated by the endoplasmic and sarcoplasmic reticulum is critical for the development and proper function of the heart.

Dehydration of Methanol to Dimethyl ether, Ethylene and Propylene over Silica-Doped Sulfated Zirconia

  • Hussain, Syed T.;Mazhar, M.;Gul, Sheraz;Chuang, Karl T;Sanger, Alan R.
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권11호
    • /
    • pp.1844-1850
    • /
    • 2006
  • Two types of catalyst samples were prepared, one sulfated zirconia and the other silica doped sulfated zirconia. The acidity tests indicate that sulfated zirconia doped with silica has higher concentration and strength of acidic catalyst sites than undoped sulfated zirconia. The acidic surface sites have been characterized using FTIR, NMR, pyridine adsorption, TPD, XRD and nitrogen adsorption. Doping with silica increased the concentration of surface Lewis and Brfnsted acid sites and resulted in generation of proximate acid sites.The activity test indicates that doping sulfated zirconia with silica increases both the acidity and catalytic activity for liquid phase dehydration of methanol at 413-453 K. Methanol is sequentially dehydrated to dimethyl ether and ethylene over both catalysts. Significant amounts of propylene are also formed over the silica-doped catalyst, but not over the undoped catalyst.

Calcium and bioenergetics: from endoplasmic reticulum to mitochondria

  • Lee, Duk-Gyu;Michalak, Marek
    • Animal cells and systems
    • /
    • 제16권4호
    • /
    • pp.269-273
    • /
    • 2012
  • Controlling metabolism throughout life is a necessity for living creatures, and perturbation of energy balance elicits disorders such as type-2 diabetes mellitus and cardiovascular disease. $Ca^{2+}$ plays a key role in regulating energy generation. $Ca^{2+}$ homeostasis of the endoplasmic reticulum (ER) lumen is maintained through the action of $Ca^{2+}$ channels and the $Ca^{2+}$ ATPase pump. Once released from the ER, $Ca^{2+}$ is taken up by mitochondria where it facilitates energy metabolism. Mitochondrial $Ca^{2+}$ serves as a key metabolic regulator and determinant of cell fate, necrosis, and/or apoptosis. Here, we focus on $Ca^{2+}$ transport from the ER to mitochondria, and $Ca^{2+}$-dependent regulation of mitochondrial energy metabolism.

Robust Reliability Analysis of Vibration Components

  • Huang, Hong-Zhong;Li, Yong-Hua;Ming J. Zuo
    • International Journal of Reliability and Applications
    • /
    • 제5권2호
    • /
    • pp.59-74
    • /
    • 2004
  • There are many uncertain parameters associated with vibration components. Their physical parameters, the machining quality of vibration components, and the applied load acting on them are all uncertain. As a result, the natural frequency and the fatigue limits are also uncertain variables. In this paper, we express these parameters of vibration components and the frequency zone of resonance through interval models; this way, the robust reliability of the vibration components is defined. The robust reliability model measures and assesses the reliability of vibration components. The robust reliability of a cantilever beam is evaluated as an example. The results show that this method is reasonable for robust reliability analysis of vibration components because it does not require a large amount of failure data, it avoids the evaluation of the probability density function, and the computation is simple.

  • PDF

Temperature Effects on Fracture Toughness Parameters for Pipeline Steels

  • Chanda, Sourayon;Ru, C.Q.
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1754-1760
    • /
    • 2018
  • The present article showcases a temperature dependent cohesive zone model (CZM)-based fi nite element simulation of drop weight tear test (DWTT), to analyse fracture behavior of pipeline steel (PS) at different temperatures. By co-relating the key CZM parameters with known mechanical properties of PS at varying temperature, a temperature dependent CZM for PS is proposed. A modified form of Johnson and Cook model has been used for the true stress-strain behavior of PS. The numerical model, using Abaqus/CAE 6.13, has been validated by comparing the predicted results with load-displacement curves obtained from test data. During steady-state crack propagation, toughness parameters (such as CTOA and CTOD) were found to remain fairly constant at a given temperature. These toughness parameters, however, show an exponential increase with increase in temperature. The present paper offers a plausible approach to numerically analyze fracture behavior of PS at varying temperature using a temperature dependent CZM.