• 제목/요약/키워드: Alanine dehydrogenase

검색결과 256건 처리시간 0.028초

Regulatory Mechanism of L-Alanine Dehydrogenase from Bacillus subtilis

  • 김수자;김유진;서미란;전봉숙
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권12호
    • /
    • pp.1217-1221
    • /
    • 2000
  • L-alanine dehydrogenase from Bacillus subtilis exhibits allosteric kinetic properties in the presence of $ZN^{2+}$. $ZN^{2+}$ induces the binding of substrate (L-alanine) to be cooperative at pH 8.0. The effect of pH variation between pH 7.0 and pH 10.0 on the inhibition by $ZN^{2+}$ correlates with the pH effect on the $K_m$ values for L-alanine within these pH range indicating that $ZN^{2+}$ and substrate compete for the same site. No such cooperativity is induced by $ZN^{2+}$ when the reaction is carried out at pH 10. At this higher pH, $ZN^{2+}$ binds with the enzyme with lower affinity and noncompetitive with respect to L-alanine. Inhibition of L-alanine dehydrogenase by $ZN^{2+}$ depends on the ionic strength. Increase in KCI concentration reduced the inhibition, but allosteric property in $ZN^{2+}$ binding is conserved. A model for the regulatory mechanism of L-alanine dehydrogenase as a noncooperative substrate-cooperative cofactor allosteric enzyme, which is compatible in both concerted and the sequential allosteric mechanism, is proposed.

이원효소 연쇄반응의 형광분석에 의한 Urinary Dipeptidase의 활성도 측정 (Two-enzyme coupled fluorometric assay of urinary dipeptidase)

  • 박행순;위정순
    • 분석과학
    • /
    • 제8권3호
    • /
    • pp.359-364
    • /
    • 1995
  • Urinary dipeptidase와 alanine dehydrogenase의 연쇄반응을 이용한 형광분석법을 개발하였다. 반응계는 기질로서 L-ala-ala, ${\beta}-NAD^+$, L-alanine dehydrogenase와 pH 9의 12.5mM sodium carbonate buffer를 포함하며 urinary dipeptidase를 가함으로써 반응을 시작했다. 생성된 NADH는 여기파장 340nm, 형광파장 460nm에서 측정했다. 기존의 glycyldehydrophenylalanine(Gdp)의 가수분해 방법과 형광분석법을 비교한 결과 0.996의 높은 상관계수를 나타냈으며 10배 이상의 감도 증가를 보였다.

  • PDF

Purification and Biochemical Characterization of Recombinant Alanine Dehydrogenase fvom Thermus caldophilux GK24

  • Bae, Jung-Don;Cho, Youn-Jeung;Kim, Doo-Il;Lee, Dae-Sil;Shin, Hyun-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.628-631
    • /
    • 2003
  • The recombinant alanine dehydrogenase (ADH) from E. coli containing Thermus caldophilus ADH was purified to homogeneity from a cell-free extract. The enzyme was purified 38-fold with a yield of 68% from the starting cell-free extract. The purified enzyme gave a single band in polyacrylamide gel electrophoresis, and its molecular weight was estimated to be 45 kDa. The pH optimum was 8.0 for reductive amination of pyruvate and 12.0 for oxidative deamination of L-alanine. The enzyme was stable up to $70^{\circ}C$. The activity of the enzyme was inhibited by 1 mM $Zn^{2+}$, 20% hexane, and 20% $CHCl_3$. However, 10 mM $Mg^{2+}$ and 40% propanol had no effect on the enzyme activity. The Michaelis constants ($K_m$) for the substrates were $50\;\mu\textrm{M}$ for NADH, 0.2 mM for pyruvate, 39.4 mM for $NH_4+$, 2.6 mM for L-alanine, and 1.8 mM for $NAD^+$.

Effects of Alanine and Glutamine on Alcohol Oxidation and Urea Nitrogen Production in Perfused Rat Liver

  • Yim, Jungeun;Chyun, Jonghee;Cha, Youngnam
    • Nutritional Sciences
    • /
    • 제6권4호
    • /
    • pp.189-194
    • /
    • 2003
  • Most of the ethyl alcohol consumed by humans is oxidized to acetaldehyde in the liver by the cytoplasmic alcohol dehydrogenase (ADH) system. For this ADH-catalyzed oxidation of alcohol, $NAD^+$ is required as the coenzyme and $NAD^+$becomes reduced to NADH. As the $NAD^+$becomes depleted and NADH accumulates, alcohol oxidation is reduced. For continued alcohol oxidation, the accumulated NADH must be quickly reoxidized to $NAD^+$, and it is this reoxidation of NADH to $NAD^+$that is known to be the rate-limiting step in the overall oxidation rate of alcohol The reoxidation of NADH to $NAD^+$is catalyzed by lactate dehydrogenase in the cytoplasm of hepatocytes, with pyruvate being utilized as the substrate. The pyruvate may be supplied from alanine as a result of amino acid metabolism via the urea cycle. Also, glutamine is thought to help with the supply of pyruvate indirectly, and to activate the urea cycle by producing $NH_3$. Thus, in the present study, we have examined the effects of alanine and glutamine on the alcohol oxidation rate. We utilized isolated perfused liver tissue in a system where media containing alanine and glutamine was circulated. Our results showed that when alanine (5.0mM) was added to the glucose-free infusion media, the alcohol oxidation rate was increased by 130%. Furthermore, when both glutamine and alanine were added together to the infusion media, the alcohol oxidation rate increased by as much as 190%, and the rate of urea nitrogen production increased by up to 200%. The addition of glutamine (5.0mM) alone to the infusion media did not accelerate the alcohol oxidation rate. The increases in the rates of alcohol oxidation and urea nitrogen production through the addition of alanine and glutamine indicate that these amino acids have contributed to the enhanced supply of pyruvate through the urea cycle. Based on these results, it is concluded that the dietary supplementation of alanine and glutamine could contribute to increased alcohol detoxification through the urea cycle, by enhancing the supply of pyruvate and $NAD^+$to ensure accelerated rates of alcohol oxidation.

열자극에 따른 효모 ( Saccharomyces cerevisiae ) 의 Isocitrate Dehydrogenase 와 Glutamate Dehydrogenase 의 활성도 및 유리 아미노산의 변화 (Changes in the Activities of Isocitrate Dehydrogenase and Glutamate Dehydrogenase and in Free Amino Acid Pool by Heat Shock in Saccharomyces cerevisiae)

  • Kim, Hak-Hyeon;Nam-Kee Chang
    • The Korean Journal of Ecology
    • /
    • 제14권1호
    • /
    • pp.75-85
    • /
    • 1991
  • Changes in the activities of isocitrate dehydrogenase (IDH) and glutamate dehydrogenase (GDH) and changes in free amino acids in the cytoplasm of Saccharomyces cerevisiae have been studied under heat shock condition. Heat shock conditions led to a significant decrease of NAD-IDH and NAD-GDH, It was shown appeared that the meaningful patterns of increase of NADP-IDH and NADP-GDH. It suggested that heat shock in yeast leads to a splitting of the TCA cycle and that glutamate synthesis takes place through the coupling of the NADP-linked isocirate and glutamate dehydrogenase. It was shown that about 14% of total free amino acids of yeast cells was decreased by heat shock. Especially heat shock condition resulted in the marked decreases of serine family amino acids such as serine, glycine and cysteine, and in the considerable increases of the rates of methionine, alanine, glutamin.

  • PDF

Unusual Allosteric Property of L-alanine Dehydrogenase from Bacillus subtilis

  • Kim, Soo-Ja;Lee, Woo-Yiel;Kim, Kwang-Hyun
    • BMB Reports
    • /
    • 제31권1호
    • /
    • pp.25-30
    • /
    • 1998
  • Kinetic studies of L-Alanine dehydrogenase from Bacillus subtilis-catalyzed reactions in the presence of $Zn^{2+}$ were carried out. The substrate (L-alanine) saturation curve is hyperbolic in the absence of the metal ion but it becomes sigmoidal when $Zn^{2+}$ is added to the reaction mixture indicating the positive cooperative binding of the substrate in the presence of zinc ion. The cooperativity of substrate binding depends on the xinc ion concentration: the Hill coefficients ($n_H$) varied from 1.0 to 1.95 when the zinc ion concentration varied from 0 to $60\;{\mu}m$. The inhibition of AlaDH by $Zn^{2+}$ is reversible and noncompetitive with respect to $NAD^+$ ($K_i\;=\;5.28{\times}10^{-5}\;M$). $Zn^{2+}$ itself binds to AlaDH with positive cooperativity and the cooperativity is independent of substrate concentration. The Hill coefficients of substrate biding in the presence of $Zn^{2+}$ are not affected by the enzyme concentration indicating that $Zn^{2+}$ binding does not change the polymerization-depolymerization equilibria of the enzyme. Among other metal ions, $Zn^{2+}$ appears to be a specific reversible inhibitor inducing conformational change through the intersubunit interaction. These results indicate that $Zn^{2+}$ is an allosteric competitive inhibitor and substrate being a non-cooperative per se, excludes the $Zn^{2+}$ from its binding site and thus exhibits positive cooperativity. The allosteric mechanism of AlaDh from Bacillus subtilis is consistent with both MWC and Koshland's allosteric model.

  • PDF

녹차 음용이 알루미늄을 투여한 흰쥐의 혈청 효소 활성도에 미치는 영향 (Effects of Green Tea Activities in Rats with Administration of Aluminum in Drinking Green Tea)

  • 신미경;한성희;한경조
    • 동아시아식생활학회지
    • /
    • 제6권2호
    • /
    • pp.127-134
    • /
    • 1996
  • 녹차 음용이 알루미늄을 투여한 흰쥐의 혈청 효소 활성도에 미치는 영향을 알아보고자 흰쥐 Sprague-Dawley계 수컷 25마리를 .5개 그룹 즉 대조군, 녹차음용군, 녹차와 알루미늄 용액 혼합군, 먼저 녹차를 2주 동안 투여 한 후에 알루미늄 용액만 2주 동안 투여한 군, 알루미늄 용액만 투여한 군으로 나누어 4주 동안 사육하여 aspartate amino transferase(AST), alanine amino transferase (ALT), lactate dehydrogenase (LDH) cholinesterase(ChE)를 조사하였다. 체중변화는 대조군에 비하여 전 실험군이 감소하였는데 특히 알루미늄과 녹차를 같이 투여한 군의 체중이 감소되었다. ALT는 대조군에 비하여 별다른 차이점을 보이지 않았으나 녹차와 같이 투여한 군에 비하여 알루미늄 용액만 투여한 군이 높았고 AST는 대조군에 비하여 녹차 투여군만 감소하였고 녹차와 알루미늄을 같이 투여한 군은 증가하였으나 알루미늄 용액만 투여한 군에 비하여 낮았다. LDH는 대조군에 비하여 전 실험군이 증가하였으며 특히 알루미늄 용액만 투여한 군은 녹차를 투여한 군에 비하여 유의적으로 증가하였고 ChE는 대조군에 비하여 알루미늄 용액만 투여한 군은 유의적으로 감소하였으나 알루미늄 용액만 투여한 군에 비하여 녹차를 같이 투여한 군은 증가하였다.

  • PDF

Activity of Human Dihydrolipoamide Dehydrogenase Is Largely Reduced by Mutation at Isoleucine-51 to Alanine

  • Kim, Hak-Jung
    • BMB Reports
    • /
    • 제39권2호
    • /
    • pp.223-227
    • /
    • 2006
  • Dihydrolipoamide dehydrogenase (E3) belongs to the pyridine nucleotide-disulfide oxidoreductase family including glutathione reductase and thioredoxin reductase. It catalyzes the reoxidation of dihydrolipoyl moiety of the acyltransferase components of three $\alpha$-keto acid dehydrogenase complexes and of the hydrogen-carrier protein of the glycine cleavage system. Isoleucine-51 of human E3, located near the active disulfide center Cys residues, is highly conserved in most E3s from several sources. To examine the importance of this highly conserved Ile-51 in human E3 function, it was substituted with Ala using site-directed mutagenesis. The mutant was expressed in Escherichia coli and highly purified using an affinity column. Its E3 activity was decreased about 100-fold, indicating that the conservation of the Ile-51 residue in human E3 was very important to the efficient catalytic function of the enzyme. Its altered spectroscopic properties implied that conformational changes could occur in the mutant.

호염성 세균의 생리적 특성

  • 송경숙;이정임;배무
    • 한국미생물생명공학회:학술대회논문집
    • /
    • 한국미생물생명공학회 1986년도 추계학술대회
    • /
    • pp.517.3-518
    • /
    • 1986
  • 국내 염장식품 및 염전으로부터 세균을 분리하여, 호염성 세균의 NaCl 농도에 따른 성장범위, 생리적 및 효소학적 특성을 조사하고자 했다. 염전으로부터 NaCl 20%배지에서 14주와 총 16종류의 젓갈류에서 NaCl 10% 배지로 56균주의 호염성 세균을 분리하여 0, 5, 10, 15, 20, 25% NaCl농도에서 성장률을 조사하고 최적온도 및 배지조성과 함께 동정에 필요한 생리실험을 하였다. 또한 세포의 효소로서 Lactate dehydrogenase, Glucokinase, Glucose-6-phosphate dehydrogenase, Alanine dehydrogenase, Isocitrate dehydrogenase 등의 특성도 조사하였다. 선별한 균주중 Acinetobacter sp, 등이 관찰 조사되었으며 최적 성장 NaCl농도는 10%이고, 최적온도는 3$0^{\circ}C$이며, 25% NaCl, 45$^{\circ}C$에서 자란 Halobacterium sp. 등이 분리되었다. 그중 Acinetobacter strain H6는 단백분해효소와 탄수화물 분해효소의 생성능이 15>10>20% NaCl순이며, 특히 Lactate dehydrogenase 활성은 2>3>1>OM NaCl 순으로 나타났고, NaCl 대신 KCl을 사용했을 때는 3>2>1> OM순으로 활성이 나타났다.

  • PDF

Effects of Fruit Extract Drink on Alcohol Metabolic Enzymes in Ethanol-treated Rats

  • Kim, Sung-Su
    • 대한의생명과학회지
    • /
    • 제20권3호
    • /
    • pp.124-128
    • /
    • 2014
  • Alcoholism is a significant global health problem. Alcohol dehydrogenase and aldehyde dehydrogenase play important roles in the metabolism of alcohol and aldehyde. In this study, we aimed to investigate the eliminatory effects of a fruit extract drink on alcohol metabolism in drunken Sprague-Dawley (SD) rats. Male SD rats were given a fruit extract drink or a commercial product (10 mL/kg) 30 min prior to 40% (5 g/kg) ethanol ingestion. To assay the effect of the fruit extract drink on blood ethanol concentration, blood samples were taken from the saphenous vein at 3 and 5 h after ethanol ingestion. The blood concentrations of alcohol, alcohol dehydrogenase, and aldehyde dehydrogenase were significantly lower in the fruit extract drink group than in the control group, in a time-dependent manner. However, the alanine aminotransferase and aspartate aminotransferase activities of all experimental groups were unaltered compared to those of the control group. These results suggested that fruit extract drink intake can have a positive effect on the reduction of alcohol, alcohol dehydrogenase, and aldehyde dehydrogenase concentrations in the blood and may alleviate acute ethanol-induced hepatotoxicity by altering alcohol metabolic enzyme activities.