• Title/Summary/Keyword: AlSiCu

Search Result 500, Processing Time 0.025 seconds

Characteristics of Heavy Metallic Elements of PM10 for Yellow sand and Non-Yellow sand during Springtime of 2002 at Busan (2002년 부산지역 봄철 황사/비황사시 PM10 중의 중금속 농도 특성)

  • Jeon, Byung-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.2
    • /
    • pp.99-108
    • /
    • 2003
  • We collected and analyzed PM10 samples to account for the characteristics of heavy metallic elements for yellow sand and non-yellow sand during springtime of 2002 at Busan, The mean PM10 mass concentration for springtime of 2002 was $219.82{\mu}g/m^3$ with the maximum $787.50{\mu}g/m^3$ and the minimum $19.44{\mu}g/m^3$. The mean concentration of metallic elements contained in PM10 are shown as follows : Si>Ca>Fe>Al>Na, respectively. The ratio of mean PM10 mass concentration for yellow sand($362.7{\mu}g/m^3$) to that for non-yellow sand($48.3{\mu}g/m^3$) was 7.5, the significant positive correlation (P<0.05) was found between yellow sand and non-yellow sand. The metallic elements concentration ratios of yellow sand to the non-yellow sand were over 10 times for Al, Ca, Mg, 4~8 times for Fe, Si, Mn. But the concentration of Na, Cu, Zn for non-yellow sand was higher than those of yellow sand. The crustal enrichment factor of Cd, Cu, Pb, Zn, Cr, K, Mn, Na, Ni for yellow sand was higher that of non-yellow sand over 10 times, and concentration rate of soil particles of yellow sand was increased 2.3 times that of nonyellow sand.

Local Current Distribution in a Ferromagnetic Tunnel Junction Fabricated Using Microwave Excited Plasma Method (마이크로파 여기 프라즈마법으로 제조한 강자성 터널링 접합의 국소전도특성)

  • Yoon, Tae-Sick;Kim, Cheol-Gi;Kim, Chong-Oh;Masakiyo Tsunoda;Migaku Takahashi;Ying Li
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.2
    • /
    • pp.47-52
    • /
    • 2003
  • Ferromagnetic tunnel junctions were fabricated by dc magnetron sputtering and plasma oxidation process. The local transport properties of the ferromagnetic tunnel junctions were studied using contact-mode Atomic Force Microscopy (AFM) and the local current-voltage analysis. Tunnel junctions with the structure of sub./Ta/Cu/Ta/NiFe/Cu/Mn$\_$75/Ir$\_$25//Co$\_$70/Fe$\_$30//Al-oxide were prepared on thermally oxidized Si wafers. Al-oxide layers were formed with microwave excited plasma using radial line slot antenna (RLSA) for 5 and 7 sec. Kr gas was used as the inert gas mixed with $O_2$ gas for the plasma oxidization. No correlation between topography and current image was observed while they were measured simultaneously. The local current distribution was well identified with the distribution of local barrier height. Assuming the gaussian distribution of the local barrier height, the ferromagnetic tunnel junction with longer oxidation time was well fitted with the experimental results. As contrast, in the case of the shorter time oxidation junction, the current mainly flow through the low barrier height area for its insufficient oxygen. Such leakage current might result in the decrease of tunnel magnetoresistance (TMR) ratio.

Classification of metals inducing filed aided lateral crystallization (FALC) of amorphous silicon

  • Jae-Bok Lee;Se-Youl Kwon;Duck-Kyun Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.160-165
    • /
    • 2001
  • The effects of various metals on Field Aided Lateral Crystallization (FALC) behaviors of amorphous silicon (a-Si) were investigated. Under an influence of electric field, metals such s Cu, Ni and Co were found to fasten the lateral crystallization toward a metal-free region, exhibiting a typical FALC behavior while the lateral crystallization of a-Si was not obvious for Pd. However, Au, Al and Cr did not induce the lateral crystallization of a-Si in metal-free region. Such phenomenological differences in various metals were studied in terms of dominant diffusing species (DDS) in the reaction between metal and Si. It was judged that the applied electric field enhanced the crystallization velocity by accelerating the diffusion of metal atoms since the occurrence of lateral crystallization would be strongly dependent on the diffusion of metal atoms than that of Si atoms. Therefore, it was concluded that he only metal-dominant diffusing species in the reaction between metal and Si results in the crystallization of a-Si in metal-free region.

  • PDF

Metal/$Al_2O_3-SiO_2$ System Interface Investigations

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.70-73
    • /
    • 2004
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics (Al$_2$O$_3$-SiO$_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a Cu/Al$_2$O$_3$-SiO$_2$ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF

Fracture and Residual Stresses in $Metal/Al_2O_3-SiO_2$ System

  • Soh, D.;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.308-312
    • /
    • 2003
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics ($Al_2O_3-SiO_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a $Cu/Al_2O_3-SiO_2$ ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF

A Scientific Analysis on the Glass Beads Excavated from the Daho-ri site NO. 6, Changwoen (창원 다호리 유적 6호분 출토 유리구슬의 과학적 분석)

  • Yun, Eunyoung;Kang, Hyungtae
    • Conservation Science in Museum
    • /
    • v.13
    • /
    • pp.45-49
    • /
    • 2012
  • A scientific analysis was carried out on the 14 pieces of glass beads excavated from the Daho-ri site NO. 6, Changweon. Most of the glass pieces were made of light blue transparent glass with round bubbles aligned in a regular direction. As a result of the SEM-EDS analysis, all the glass pieces turned out to be within the potash glass group (K2O-SiO2) and were identified to be the LCA (Low CaO, Low Al2O3) series glass, of which the concentration is 5% or below for CaO and Al2O3 respectively. In addition, it is presumed that plant materials were refined or a mineral (saltpetre, KNO3) was used as the raw materials for making potash and also that the ingredient acting as a colorants for light blue color was affected deeply by CuO.

Synthesis of Ultrafine LaAlO$_3$ Powders with Good Sinterability by Self-Sustaining Combustion Method Using (Glycine+Urea) Fuel ((Glycine+Urea) 혼합연료를 이요한 자발착화 연소반응법에 의한 우수한 소결성의 초미분체 LaAlO$_3$ 분말 합성)

  • Nam, H.D.;Choi, W.S.;Lee, B.H.;Park, S.
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.203-209
    • /
    • 1999
  • LaAlO3d single phase used as the butter layer on Si wafer for YBa2Cu3O7-$\delta$ superconductor application were prepared by solid state reaction method and by self-sustaining combustion process. The microstructure and crystallity of synthesiszed LaAlO3 powder studied using scanning electron microscope (SEM) and X-ray diffractometer(XRD), specific surface area and sintering characteristics fo powder were investigated by Brunauer-Emmett-Teller (BET) method and dilatometer respectively. In solid state reaction method, it is difficult to obtain LaAlO3 single phase up to 150$0^{\circ}C$ period. However, in self-sustaining combustion process, it is to easy to do it only $650^{\circ}C$. Based on the results of analysis of dilatometer it is easier to obtain high sintering density (98.87%) in self-sustaining combustion process than in the solid state reaction method. This reason is that the average particle size prepared by self-sustaining combustion process is nano crystal size and has high specific surface are value(56.54 $m^2$/g) compared with that by solid state reaction method. Also, LaAlO3 layer on the Si wafer has been achieved by screen printing and sintering method. Even though the sintering temperature is 130$0^{\circ}C$, the phenomena of silicon out diffusion in LaAlO3/Si interphase are not observed.

  • PDF

The Effect of Metal Fibers on the Tribology of Automotive Friction Materials (마찰재에 함유된 금속섬유와 마찰 특성의 연관관계)

  • Ko, Kil-Ju;Cho, Min-Hyung;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

Size Distributions of Trace Elements in Airborn Particulates Collected using Drum impactor at Gosan, Jeju Island : Measurements in Springtime 2002 (DRUM impactor를 이용한 대기 입자상 물질 중 원소성분의 입경분포 특성 : 제주도 고산지역의 2002년 봄철 (3.29-5.30) 측정 연구)

  • 한진석;문광주;류성윤;안준영;공부주;홍유덕;김영준
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.555-569
    • /
    • 2004
  • Size -segregated measurements of aerosol composition using 8-stage DRUM impactor are used to determine the transport of natural and anthropogenic aerosols at Gosan site from 29 March to 30 May in 2002. Separation of ambient aerosols by DRUM impactor offers many Advantages over other standard filtration techniques. Some of the most important advantages are the ability to segregate into details by particle tire, to better preserve chemical integrity since the air stream doesn't pars through the deposit, to collect samples as a function of time, and to have a wide variety of impaction surfaces available to match analytical needs. Although the transport of Yellow sand is a well-known phenomenon in springtime, the result of measurement shows that not only soil dust but also anthropogenic aerosols, including sulfur, enriched trace metals such as Pb, Ni, Zn. Cu, Cr, As, Se, Br, are transported to Gosan in springtime. This study combines the size- and time-resolved aerosol composition measurements with isentropic, backward air-mass trajectories in order to identify some potential source regions of anthropogenic aerosols. As a result, during the NYS period, the average concentration of PM$_{10}$ was 46$\mu\textrm{g}$/㎥, Si, Al. S, Fe, Cl, K, Ca were higher than 1,000 ng/㎥ and Ti was about 100 ng/㎥. The concentrations of Zn, Mn, Cu. Pb, Br, Rb, V, Cr, Ni. At, Se ranged between 1 and 70 ng/㎥. More than 50% typical soil elements, tuck as Al, Si, Fe, Cd. Ti, Cr, Cu, Br. were distributed in a coarse particle range(5.0-12${\mu}{\textrm}{m}$). In other hand, anthropogenic pollutants, luck as S, N, Vi, were mainly distributed in a fine particle range (0.09-0.56${\mu}{\textrm}{m}$). During the YS period, PM$_{10}$ increased about 8 times than NYS period, and main soil elements, such as Al, Si, S, K, V, Mn, Fe also doubled in coarse particle range (1.15-12${\mu}{\textrm}{m}$). But Zn, As, Pb, Cu and Se, which distributed in the time aerosols (0.09-0.56${\mu}{\textrm}{m}$), were on the same level with or decreased than NYS period. Finally. except the YS Period, coarse particles (2.5-12${\mu}{\textrm}{m}$) are inferred to be influenced by soil, coal combustion, waste incineration, ferrous and nonferrous sources through similar pathways with Yellow Sand. But fine particles have different sources, such as coal combustion, gasoline vehicle, biomass burning, oil or coal combustion, nonferrous and ferrous metal sources, which are transported from China, Korea peninsula and local sources.ces.

Study on the Characteristics of Electroplated Solder: Comparison of Sn-Cu and Sn-Pb Bumps (무연 도금 솔더의 특성 연구: Sn-Cu 및 Sn-Pb 범프의 비교)

  • 정석원;정재필
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.386-392
    • /
    • 2003
  • The electroplating process for a solder bump which can be applied for a flip chip was studied. Si-wafer was used for an experimental substrate, and the substrate were coated with UBM (Under Bump Metallization) of Al(400 nm)/Cu(300 nm)Ni(400 nm)/Au(20 nm) subsequently. The compositions of the bump were Sn-Cu and eutectic Sn-Pb, and characteristics of two bumps were compared. Experimental results showed that the electroplated thickness of the solders were increased with time, and the increasing rates were TEX>$0.45 <\mu\textrm{m}$/min for the Sn-Cu and $ 0.35\mu\textrm{m}$/min for the Sn-Pb. In the case of Sn-Cu, electroplating rate increased from 0.25 to $2.7\mu\textrm{m}$/min with increasing current density from 1 to 8.5 $A/dm^2$. In the case of Sn-Pb the rate increased until the current density became $4 A/dm^2$, and after that current density the rate maintains constant value of $0.62\mu\textrm{m}$/min. The electro plated bumps were air reflowed to form spherical bumps, and their bonded shear strengths were evaluated. The shear strength reached at the reflow time of 10 sec, and the strength was of 113 gf for Sn-Cu and 120 gf for Sn-Pb.