• Title/Summary/Keyword: AlSi12 powder

Search Result 64, Processing Time 0.027 seconds

Fabrication and Properties of High Strength Hypereutectic Al-Si Powder by Gas Atomization Process I. Powder Production and Compressibility (가스분무 공정에 의한 고강도 과공정 Al-Si 합금 분말의 제조 및 특성 연구 I. 분말 제조 및 성형성)

  • Kim Yong-Jin;Kim Jin-Chun
    • Journal of Powder Materials
    • /
    • v.12 no.4 s.51
    • /
    • pp.296-302
    • /
    • 2005
  • In order to improve mechanical properties, the hypereutectic Al-20 wt%Si based prealloy powder was prepared by gas atomization process. Microstructure and compressibility of the atomized Al-Si powder were investigated. The average powder size was decreased with increasing the atomization gas pressure. Size of primary Si particles of the as-atomized powder was about $5-8\;\mu{m}$. The as-atomized Al-Si powder such as AMB 2712 and AMB 7775 to increase compressibility and sinterability. Relative density of the mixed powder samples sintered at $600^{\circ}C$ was reached about 96% of a theoretical density.

Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders (AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구)

  • Seo, J.Y.;Yoon, H.S.;Lee, K.Y.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

The effect of the addition of TiO2 in the preparation of (Al2O3-SiC)- SiC composite powder by SHS Process (SHS법을 이용한 복합분말(Al2O3-SiC) 제조시 TiO2첨가의 영향)

  • Yun, Gi-Seok;Yang, Beom-Seok;Lee, Jong-Hyeon;Won, Chang-Hwan
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.48-53
    • /
    • 2002
  • $Al_2O_3-SiC$ and $Al_2O_3-SiC$-TiC composite powders were prepared by SHS process using $SiO_2,\;TiO_2$, Al and C as raw materials. Aluminum powder was used as reducing agent of $SiO_2,\;TiO_2$ and activated charcoal was used as carbon source. In the preparations of $Al_2O_3-SiC$, the effect of the molar ratio in raw materials, compaction pressure, preheating temperature and atmosphere were investigated. The most important variable affecting the synthesis of $Al_2O_3-SiC$ was the molar ratio of carbon. Unreactants remained in the product among all conditions without compaction. The optimum condition in this reaction was $SiO_2$: Al: C=3: 5: 5.5, 80MPa compaction pressure under Preheating of $400^{\circ}C$ with Ar atmosphere. However there remains cabon in the optimum condition. The effect of $TiO_2$ as additive was investigated in the preparations of $Al_2O_3-SiC$. As a result of $TiO_2$ addition, $Al_2O_3-SiC$-TiC composite powder was prepared. The $Al_2O_3$ powder showed an angular type with 8 to $15{\mu}m$, and the particle size of SiC powder were 5~$10{\mu}m$ and TiC powder were 2 to $5{\mu}m$.

Microstructure and Mechanical Properties of (SiC)p/Al Composite Fabricated by a Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 (SiC)p/Al 복합재료의 미세조직 및 기계적 성질)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.11 no.3
    • /
    • pp.259-264
    • /
    • 2004
  • Aluminum based metal matrix composite reinforced with SiC particles was fabricated by the powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. Mixture of aluminum powder and SiC particles of which volume content was varied from 5 to 20vol.% was filled in the tube by tap filling and then rolled to 75% reduction at ambient temperature. The rolled specimen was sintered at 56$0^{\circ}C$ for 0.5hr. The tensile strength of the (SiC)$_{p}$/Al composite increased with the volume content of SiC particles, and at 20vol.% it reached a maximum of 100㎫ which is 1.6 times higher than unreinforced material. The elongation decreased with the volume content of $Al_{2}$O$_{3}$ particles. The mechanical properties of the (SiC)$_{p}$/Al composite fabricated by the powder-in sheath rolling is compared with that of (Al$_{2}$O$_{3}$)$_{p}$/Al composite by the same process.ess.

Manufacturing and Damping Properties of Al-Si/Gr. Composite using extruded Al/Gr. Composite (Al/흑연 압출재를 이용한 Al-Si/흑연 복합재료 제조와 감쇠능)

  • Park, Hun-Berm;Kwon, Hyuk-Moo
    • Journal of Korea Foundry Society
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2001
  • Al/15%Gr. composite have been manufactured by mixing, compacting, and extruding aluminium powder and graphite powder. Then, Al-6%Si/x%Gr., Al-12%Si/x%Gr., and Al-18%Si/x%Gr.(x: 0, 2, 4, 6, 8) composites have been manufactured by remelting the extruded materials(Al/15%Gr.), Al-33.3%Si alloy, and Al ingot, etc. We conducted experiments to chracterize the microstructure, and damping properties and hardness. The result of microstructure experiment on Al-x%Si/y%Gr. composites reveals the good dispersion of graphite. As to Al-Si/y%Gr. composites, the more the graphite contents, the less the tensile strength. And the tensile strength varied according to contents of Si: with its highest value in Al-18%Si/y%Gr. composites and lowest in Al-6%Si/y%Gr. composites. As to Al-x%Si/y%Gr. composites, the more the contents of graphite, the more the vibration damping properties. And we can get the highest vibration damping rate in Al-12%Si/y%Gr. composites which matrix structure is an eutectic component.

  • PDF

Synthesis of Lu2.94Ce0.06MgAl3SiO12 phosphor and its photoluminescent properties

  • Lee, Jung-Il;Kim, Tae Wan;Shin, Ji Young;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.3
    • /
    • pp.121-126
    • /
    • 2015
  • A novel $Ce^{3+}$ doped $Lu_3MgAl_3SiO_{12}$ phosphor ($Lu_{2.94}Ce_{0.06}MgAl_3SiO_{12}$) was successfully synthesized by a conventional solid-state reaction at $1450^{\circ}C$ for 5 h. The crystal structure of the synthesized phosphor powder was characterized by X-ray diffraction and Rietveld refinement. The prepared phosphor powder showed a broad peak at 550 nm, and the temperature dependence on photoluminescence properties of the prepared $Lu_{2.94}Ce_{0.06}MgAl_3SiO_{12}$ phosphor was investigated from 300 to 525 K. The activation energy for thermal quenching was determined by Arrhenius fitting. The experimental results clearly indicate that prepared $Lu_{2.94}Ce_{0.06}MgAl_3SiO_{12}$ phosphor has great potential for a down-conversion yellow phosphor in white light-emitting diodes.

Preparation of Ultrafine Mullite Powder from Metal Alkoxides (금속 알콕사이드로부터 Mullite 초미분체의 제조)

  • Yim, Going;Yim, Chai-Suk;Kim, Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.719-724
    • /
    • 2006
  • Ultrafine mullite powder was prepared from aluminium-secbutoxide and tetraethyl orthosilicate(TEOS) in the molar $Al_2O_3/SiO_2$=3/2. Sol-gel method by partial hydrolysis technique, as it were, first, TEOS was partially hydrolysized and then mixed with Al-secbutoxide for complete hydrolysis was used. X-ray diffraction, infrared spectroscopy and transmission electron microscopy, etc. confirmed that the mullite powder prepared by this method is in the stoichiometric $Al_2O_3/SiO_2$ ratio. Al-Si spinel was formed at $980^{\circ}C$ and ultrafine mullite powder with about 20 nm particle size was obtained above $1,200^{\circ}C$. Also mullite powders calcined at $1,600^{\circ}C$ had a stoichiometric composition, $3Al_2O_3{\cdot}2SiO_2$ and the lattice constants of the mullite powders calcined above $1,200^{\circ}C$ were almost coincided with theoretical values.

Effect of Process Parameters on the Morphology and Size of Spray-Dried Granule Powder for Fabrication of SiAlON Raw Material (SiAlON 원료분말제조를 위한 분무건조 과립분말의 형상과 크기에 미치는 공정변수효과)

  • Choi, Jae-Hyeong;Lee, Soyul;Han, Yoonsoo;Lee, Sung-Min;Nahm, Sahn;Kim, Seongwon
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.716-721
    • /
    • 2017
  • SiAlON-based ceramics are some of the most typical ceramic materials used as cutting tools for HRSA(Heat Resistant Super-Alloys). SiAlON can be fabricated using ceramic processing, such as mixing, granulation, compaction, and sintering. Spray drying is a widely-used method for producing a granular powder of controlled morphology and size with flowability. In this study, we report a systematic investigation aimed at optimizing spherical granule morphology by controlling spray-drying parameters such as gas flow and feed rate. Before spray drying, the viscosities of the raw material slurries were also optimized with the amount of dispersant added.

Laser Cladding with Al-36%Si Powder Paste on A319 Al Alloy Surface to Improve Wear Resistance (A319 알루미늄 합금 표면에 Al-36%Si 합금분말의 레이저 클래딩에 의한 내마모성 향상)

  • Lee, Hyoung-Keun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.58-62
    • /
    • 2017
  • A319 aluminum alloy containing 6.5% Si and 3.5% Cu as major alloying elements has been widely used in machinery parts because of its excellent castability and crack resistance. However it needs more wear resistance to extend its usage to the severe wear environments. It has been known that hyper-eutectic Al-Si alloy having more than 12.6% Si contains pro-eutectic Si particles, which give better wear resistance and lubrication characteristics than hypo-eutectic Al-Si alloy like A319 alloy. In this study, it was tried to clad hyper-eutectic Al-Si alloy on the surface of A319 alloy. In the experiments, Al-36%Si alloy powder was mixed with organic binder to make a fluidic paste. The paste was screen-printed on the A319 alloy surface, melted by pulsed Nd:YAG laser and alloyed with the A319 base alloy. As experimental parameters, the average laser power was changed to 111 W, 202 W and 280 W. With increasing the average laser power, the melting depth was changed to $142{\mu}m$, $205{\mu}m$ and $245{\mu}m$, and the dilution rate to 67.2 %, 72.4 % and 75.7 %, and the Si content in the cladding layer to 16.2 %, 14.6 % and 13.7 %, respectively. The cross-section of the cladding layer showed very fine eutectic microstructure even though it was hyper-eutectic Al-Si alloy. This seems to be due to the rapid solidification of the melted spot by single laser pulse. The average hardness for the three cladding layers was HV175, which was much higher than HV96 of A319 base alloy. From the block-on-roll wear tests, A319 alloy had a wear loss of 5.8 mg, but the three cladding layers had an average wear loss of 3.5 mg, which meant that an increase of 40 % in wear resistance was obtained by laser cladding.

Surface Characterization of $\beta$-Sialon Powder Prepared from Hadong Kaolin (하동 카올린으로부터 제조한 $\beta$-Sialon 분체의 표면특성)

  • 임헌진;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.12
    • /
    • pp.961-968
    • /
    • 1991
  • The nature and composition of the surfaces of silicon nitride and β-Sialon powders were investigated using high voltage and high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). β-Sialon powder was produced from Hadong kaolin by the carbothermic reduction and simultaneous nitridation. XPS showed that Al was contained in the surface of β-Sialon powder besides Si, N and O components, which is different from that of silicon nitride. It was supposed that Al in the surface of β-Sialon was bonded with oxygen from the oxygen-nitrogen ratio and the measurement of Al 2p binding energies. After both silicon nitride and β-Sialon powders were oxidized at 800℃ for 24h in air, nitrogen didn't exist in the surfaces and the depth of the oxide layer increased. The measurement of Si 2p binding energies showed that the chemical shifts occurred from Si3N2O and/or Si2N2O to SiO2 phase.

  • PDF