• Title/Summary/Keyword: AlN-W composites

Search Result 9, Processing Time 0.028 seconds

Mechanical Properties and Microstructure of AlN/W Composites (AlN/W계 복합재료의 기계적 특성과 미세구조)

  • 윤영훈;최성철;박철원
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • Monolithic AlN and AlN-W composites were fabricated by pressure-less sintering at 190$0^{\circ}C$ under nitrogen atmosphere and the influences of tungsten phase on the microstructure and mechanical properties were investi-gated. In the fabrication of sintered specimen no additive was used. And monolithic AlN showed substantial grain growth and low relative density. AlN-W composites were fully densified and grain growths of matrix were inhibited. The densification behavior of composites were inferred to be achieved through the liquid phase sintering process such as particle-rearrangement and solutino-reprecipitation. Also the oxid phases which is expected to form liquid phases duringsintering process were detected by XRD analysis. As the tungsten volume content increases fracture strength was decreased and fracture toughness was increased. It was suppo-sed that the strength decrease of composites with tungsten content was due to existence of interface phases. The subcritical crack growth behavior was observed from the stress-strain curve of composites. The effect of the secondary phase and interface phases on toughness in crease were studied through observation of crack propagation path and the influence of residual stress on crack propagation was investigated by X-ray residual stress measurement. In the result of residual stress measurement the compressive stress of matrix in composi-test was increased with tungsten volume content and the compressive stress distribution of matrix must have contributed to the inhibition of crack propagation.

  • PDF

Evaluation of Thermal Conductivity for Screen-Printed AlN Layer on Al Substrate in Thickness Direction (알루미늄 기판에 스크린 인쇄한 AlN 후막의 두께 방향으로 열전도도 평가)

  • Kim, Jong-Gu;Park, Hong-Seok;Kim, Hyun;Hahn, Byung-Dong;Cho, Young-Rae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.65-70
    • /
    • 2015
  • A study on thermal properties for a single-layer metal and two-layer composites was investigated for the heat-sink application. For the single-layer metal, an aluminum alloy (Al6061) was selected. A screen printed aluminum nitride (AlN) layer on the Al6061 substrate was chosen for the two-layer composites. The thermal conductivity of the sample was determined from the thermal diffusivity measured by the light flash analysis (LFA), specific heat and density. Measured thermal property values were compared to calculated values using the data from the references. The thermal conductivity of composites with screen printed AlN layer on the Al6061 substrate decreased linearly with increasing the thickness of AlN layer. Measured values of the thermal conductivity for composites with $53{\mu}m$ and $163{\mu}m$ thick AlN layers were $114.1W/m{\cdot}K$ and $72.3W/m{\cdot}K$, respectively. In particular, the thermal conductivity of the screen-printed AlN layer was demonstrated by appling the rule of mixture in view point of thermal resistivity. Measured values of the thermal conductivity for AlN layers with the thickness of $53{\mu}m$ and $163{\mu}m$ showed $9.35W/m{\cdot}K$ and $12.40W/m{\cdot}K$, respectively.

Determination of Thermal Conductivity and Numerical Analysis of Al-Cr-N-O Composites Layer Formed by Hydro-thermal Process (수열합성된 Al-Cr-N-O계 도포층의 열전도 측정과 수학적 해석)

  • Kim, Ma-Ro;Yang, So-Eun;Lee, Jong-Jae;Kim, Byeong-Du;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.215-215
    • /
    • 2014
  • Composites layer of Al-Cr-Ni-O system was prepared on a steel plate by hydro-thermal process at $700^{\circ}C$ for 12 hours, which phase identification and thermal conductivity were determined. The composites layer consisted of aluminum nitride, alumina, chromium carbide and aluminium, which density was $3.7kg/m^3$. The thermal conductivity of the coating layer determined by thermal data acquisition system was about 98.0 W/m/ which depended on the AlN content. Numerical modelling of the heat transfer behavior of the coating layer was well agreement with the empirical data.

  • PDF

Electrodeposition of Ni-W/Al2O3 Nano-Composites and the Influence of Al2O3 Incorporation on Mechanical and Corrosion Resistance Behaviours

  • M. Ramaprakash;R. Nivethida;A. Muthukrishnan;A. Jerom Samraj;M. G. Neelavannan;N. Rajasekaran
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.377-387
    • /
    • 2023
  • Ni-W/Al2O3 nano-composites were electrodeposited on mild steel substrate for mechanical and corrosion resistance applications. This study focused on the preparation of Ni-W/Al2O3 nano-composite coating with various quantity of Al2O3 incorporations. The addition of Al2O3 in the electrolytes were varied from 1-10 g/L in electrolytes and the Al2O3 incorporation in Ni-W/Al2O3 nano-composite coatings were obtained from 1.82 to 13.86 wt.%. The incorporation of Al2O3 in Ni-W alloy matrix influenced the grain size, surface morphology and structural properties were observed. The distributions of Al2O3 particle in alloy matrix were confirmed using electron microscopy (FESEM and TEM) and EDAX mapping analysis. The crystal structure informations were studied using X-ray diffraction method and it confirms that the deposits having cubic crystal structure. The better corrosion rate (0.87 mpy) and microhardness (965 HV) properties were obtained for the Ni-W/Al2O3 nano-composite coating with 13.86 wt.% of Al2O3 incorporations.

High Thermal Conductive Natural Rubber Composites Using Aluminum Nitride and Boron Nitride Hybrid Fillers

  • Chung, June-Young;Lee, Bumhee;Park, In-Kyung;Park, Hyun Ho;Jung, Heon Seob;Park, Joon Chul;Cho, Hyun Chul;Nam, Jae-Do
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • Herein, we investigated the thermal conductivity and thermal stability of natural rubber composite systems containing hybrid fillers of boron nitride (BN) and aluminum nitride (AlN). In the hybrid system, the bimodal distribution of polygonal AlN and planar BN particles provided excellent filler-packing efficiency and desired energy path for phonon transfer, resulting in high thermal conductivity of 1.29 W/mK, which could not be achieved by single filler composites. Further, polyethylene glycol (PEG) was compounded with a commonly used naphthenic oil, which substantially increased thermal conductivity to 3.51 W/mK with an excellent thermal stability due to facilitated energy transfer across the filler-filler interface. The resulting PEG-incorporated hybrid composite showed a high thermal degradation temperature (T2) of 290℃, a low coefficient of thermal expansion of 26.4 ppm/℃, and a low thermal distortion parameter of 7.53 m/K, which is well over the naphthenic oil compound. Finally, using the Fourier's law of conduction, we suggested a modeling methodology to evaluate the cooling performance in thermal management system.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Effect of Processing Parameters on the Densification of Carbon/Carbon Composite by Isothermal Low-Pressure Chemical Vapor Infiltration (등온 저압화학기상침투법에 의한 탄소/탄소 복합재료의 치밀화에 대한 제조공정변수의 영향)

  • Park, H.D.;Ahn, C.W.;Cho, K.;Yoon, B.Y.;Kim, K.S.
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.259-267
    • /
    • 1994
  • The effect of processing parameters, temperature, gas concentration, gas flow rate and pressure, were studied on the densification of carbon/carbon composites using a Robust design method in isothermal low-pressure chemical vapor infiltration with a gas system of $C_3H_8-N_2$ After one time of isothermal low-pressure chemical vapor infiltrat.ion, the bulk density of carbon/carbon composites in creased up to 1-9% and apparent porosity of the composites decreased down to 20-50%. ANOVA analysis of the experiment.al data revealed that the important parameters of isothermal lowpressure chemical vapor infiltration were temperature, gas concentration and gas flnw rate. 'There was almost no ~ f f e c t on densification by pressure and interaction between each parameters. In t, he present experimental conditions, the highest bulk density was obtained at $1100^{\circ}C$ temperature, 100% $C_3H_8$, concentration, 100 SCCM flow rate and 5 torr pressure.

  • PDF

SURFACE HARDNESS OF THE DENTAL COMPOSITE CURED BY LIGHT THAT PENETRATE TOOTH STRUCTURE ACCORDING TO THICKNESS OF TOOTH STRUCTURE, LIGHT INTENSITY AND CURING TIME (치질을 투과한 조사광에 의한 복합레진 중합시 치질의 두께, 광세기 및 조사 시간이 복합레진의 표면 경도에 미치는 영향)

  • Cho, Soo-Kyung;Kim, Dong-Jun;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.2
    • /
    • pp.128-137
    • /
    • 2005
  • In this study we measured the amount of light energy that was projected through the tooth material and analyzed the degree of polymerization by measuring the surface hardness of composites. For polymerization, Optilux 501 (Demetron, USA) with two types of light guide was used: a 12 mm diameter light guide with 840 nW/$cm^2$ light intensity and a 7 mm diameter turbo light guide with 1100 nW/$cm^2$. Specimens were divided into three groups according to thickness of penetrating tooth (1 mm, 2 mm, 0 mm). Each group was further divided into four subgroups according to type of light guide and curing time (20 seconds, 40 seconds). Vickers' hardness was measured by using a microhardness tester. In 0 mm and 1 mm penetrating tooth group, which were polymerized by a turbo light guide for 40 seconds, showed the highest hardness values. The specimens from 2 mm penetrating tooth group, which were polymerized for 20 seconds, demonstrated the lowest hardness regardless of the types of light guides (p < 0.05). The results of this study suggest that, when projecting tooth material over a specified thickness, the increase of polymerization will be limited even if light intensity or curing time is increased.

Electrical Properties of BaTiO3-based 0603/0.1µF/0.3mm Ceramics Decoupling Capacitor for Embedding in the PCB of 10G RF Transceiver Module

  • Park, Hwa-sun;Na, Youngil;Choi, Ho Joon;Suh, Su-jeong;Baek, Dong-Hyun;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1638-1643
    • /
    • 2018
  • Multi-layer ceramic capacitors as decoupling capacitor were fabricated by dielectric composition with a high dielectric constant. The fabricated decoupling capacitors were embedded in the PCB of the 10G RF transceiver module and evaluated for the characteristics of electrical noise by the level of AC input voltage. In order to further improve the electrical properties of the $BaTiO_3$ based composite, glass frit, MgO, $Y_2O_3$, $Mn_3O$, $V_2O_5$, $BaCO_3$, $SiO_2$, and $Al_2O_3$ were used as additives. The electrical properties of the composites were determined by various amounts of additives and optimum sintering temperature. As a result of the optimized composite, it was possible to obtain a density of $5.77g/cm^3$, a dielectric constant of 1994, and an insulation resistance of $2.91{\times}10^{12}{\Omega}$ at an additive content of 5wt% and a sintering temperature of $1250^{\circ}C$. After forming a $2.5{\mu}m$ green sheet using the doctor blade method, a total of 77 layers were laminated and sintered at $1180^{\circ}C$. A decoupling capacitor with a size of $0.6mm(W){\times}0.3mm(L){\times}0.3mm(T)$ (width, length and thickness, respectively) and a capacitance of 100 nF was embedded using a PCB process for the 10G RF Transceiver modules. In the range of AC input voltage 400mmV @ 500kHz to 2200mV @ 900kHz, the embedded 10G RF Transceiver modules evaluated that it has better electrical performance than the non-embedded modules.